
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

State-in-mode analysis of the power flow Jacobian for static voltage stability

Yue Songa,⁎, David J. Hilla,b, Tao Liua

a Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong
b School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW 2006, Australia

A R T I C L E I N F O

Keywords:
Voltage stability
Power flow Jacobian
Modal analysis
Participation factor

A B S T R A C T

In static voltage stability analysis, participation factors have been used as an index that measures the con-
tribution of the critical mode of power flow Jacobian in the system states. However, this index as usually defined
is in a mode-in-state manner that cannot adequately reflect the impact of system states on voltage collapse. In
this paper we take a new state-in-mode viewpoint to study the power flow Jacobian. We express the critical
mode into a weighted sum of system states, which gives rise to the definitions of state-in-mode participation
factor (SIMPF) and state-in-mode sensitivity (SIMS). The SIMPF measures the contribution of a system state to
the critical mode, and the SIMS measures the control sensitivity of the system state to the critical mode. The
proposed SIMPF and SIMS apply to both node states and network states including active/reactive power in-
jections and active power flows across lines. They provide new insights into the mechanism of saddle-node
bifurcation and limit-induced bifurcation, two most common types of voltage instability, by revealing the role of
system states. The SIMPF and SIMS can also guide the system dispatch for voltage stability enhancement. The
obtained results are validated by the simulations on IEEE 118-bus system and Polish 3120-bus system.

1. Introduction

Power flow equations are the fundamental equations in power
systems, which describe the balance between load and generation via
power transfer over the underlying power network. Power flow
Jacobian, i.e., the Jacobian matrix of the power flow equations, plays
an important role in power flow analysis. It is not only an essential
quantity in the Newton-Raphson iteration for finding power flow so-
lutions, but also provides rich information for power system planning,
operation and control.

In particular, the static voltage stability problem, which refers to the
existence of power flow solution, is closely linked to the properties of
power flow Jacobian. The singularity point of the power flow Jacobian
is commonly regarded as a static voltage stability limit [1]. Under
certain circumstances, the singularity point is also equivalent to the
saddle node bifurcation (SNB) of the system dynamical equations [2,3].
In addition, applying modal analysis to power flow Jacobian gives rise
to the concept of participation factor [4], which measures the relative
contribution of a mode (defined as an eigenvalue of power flow Jaco-
bian) to the V-Q sensitivities of load buses. The participation factor with
respect to the critical mode (zero eigenvalue) has been widely used to
identify the effective placement for reactive power compensators [5–7].
The participation factor considering the second-order expansion of

power flow Jacobian is proposed in [8]. Also, other variants of parti-
cipation factors have been developed to measure the contribution of a
mode in the sensitivities with respect to generators [9,10].

In essence, the participation factor represents the influence of the
critical mode in node sensitivities. It can be classified as the mode-in-
state information, and we henceforth call it the “mode-in-state parti-
cipation factor” (MISPF) to disambiguate. Besides the MISPF, there is
another type of index called the state-in-mode participation factor
(SIMPF), which measures the contribution of system states to the cri-
tical mode. The concept of SIMPF is more important than MISPF in
revealing the mechanism of voltage instability, i.e., how the critical
mode is formed as the system states evolve. The definition of SIMPF was
first proposed in [11], which shows that the MISPF and SIMPF take the
same expression by assuming the state variation direction is parallel
with the right eigenvector of the critical mode. It is subsequently shown
in [12] that MISPF and SIMPF are generally non-identical when con-
sidering arbitrary state variation directions. However, in [12], the
concept of SIMPF has been redefined based on the dynamics context,
i.e., the modes in differential equations. This raises the question of how
a similar dichotomy may apply to algebraic equations such as power
flow equations. In addition, some recent works [13,14] revealed that
voltage collapse is closely linked to not only node states but also net-
work states (e.g., power flow across lines). These results indicate that
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the state-in-mode idea deserves further attention for understanding the
role of system states in voltage stability.

In this paper, we develop a novel state-in-mode analysis framework
tailored for the power flow Jacobian. The definitions of SIMPF and
state-in-mode sensitivity (SIMS) are proposed. The SIMPF and SIMS
measure the contribution and control sensitivity of system states to the
critical mode, respectively. The merits of the proposed indices are
threefold. First, the SIMPF and SIMS apply to both node states and
network states, which include active power injections, reactive power
injections and active power flows across lines. Second, unlike the MISPF
that are mainly designed for SNB, the SIMPF and SIMS apply to both
SNB and another common type of voltage instability namely the limit-
induced bifurcation (LIB), which provide a unified viewpoint for the
instability mechanism. Third, the SIMPF and SIMS indicate effective
directions for active power dispatch and reactive power compensation
to enhance voltage stability.

The remainder of this paper is organized as follows. A brief review
of the power flow model and traditional MISPF is given in Section 2. In
Section 3, the state-in-mode analysis of power flow Jacobian is carried
out and the definitions of SIMPF and SIMS are proposed. The results are
verified by numerical simulation on IEEE 118-bus system in Section 4,
and a conclusion is made in Section 5.

2. Problem formulation

2.1. Power flow equations and static voltage stability

Consider a power system with n+1 buses. Without loss of gen-
erality, we number the PQ buses as � = … d{1, 2, , }pq , PV buses as
� = + …d n{ 1, , }pv and the slack bus as � = +n{ 1}s . For each bus i, we
denote P Q,i i as its active and reactive power injection, and θ V,i i as its
phase angle and voltage magnitude. In addition, denote the admittance
matrix as �= + ∈ + × +Y G Bj n n( 1) ( 1), where the matrices G B, denote
the real part and imaginary part. Then, the power flow equations can be
expressed as follows
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where θij represents = −θ θ θij i j; �i denotes the set of adjacent buses of
bus i, and �∈j i means bus i and bus j are directly connected by a line;
Y G,ij ij and Bij are the i j( , ) entry of Y G, and B, respectively;
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is the phase shift caused by line loss. The power in-

jections P Q,i i in Eq. (1) are further parameterized to describe a load
increase scenario
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where P Q P, ,Li Li Gi
0 0 0 denote the active power load, reactive power load

and active power generation at bus i at a normal operating point, re-
spectively; P Q P, ,Li
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i denotes the predefined increase directions of
the active power load, reactive power load and active power genera-
tion, respectively; QGi

lim denotes the reactive power limit (either upper or
lower limit) of the generator at bus i; and the parameter μ is the load
increase coefficient.
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Denote θ V( , )d as the corresponding power flow solution, where
� � �= ∈ ∀ ∈ ∪θ θ i[ ] ,i

n
pq pv denotes the vector of non-slack bus an-

gles and � �= ∈ ∀ ∈V V i[ ] ,d i
d

pq denotes the vector of PQ bus vol-
tages. Linearizing Eq. (1) at θ V( , )d gives
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where the notation “/” means entry-wise division for two vectors. The
matrix �∈ + × +Jpf

n d n d( ) ( ) is the power flow Jacobian. The entries of
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Note that the power flow Jacobian Jpf in Eq. (3) is slightly different
from the conventional power flow Jacobian, say Jpf

conv, which is defined
by
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It follows that =J J I Ddiag{ , }pf pf
conv

n V , where
� �= ∈ ∀ ∈×D V idiag{ } ,V i

d d
pq and �∈ ×In

n n denotes the identity
matrix. It implies that the determinants of Jpf and Jpf

conv have the same
sign, and hence Jpf and Jpf

conv provide the same indication of voltage
instability, which will be detailed later. Here we adopt Jpf as its ex-
pression will bring much convenience to the following analysis.

Based on the power flow equations parameterized by μ, we in-
troduce two common types of voltage instability, namely SNB and LIB.
We take the P-μ nose curve of an arbitrary bus for illustration since all
buses share a common μ and indicate the same stability limit point.
Referring to a simple nose curve in Fig. 1, initially there exist a high-
voltage solution and a low-voltage solution for each μ. As μ slowly
increases, the two solutions get closer and coalesce at a nose point
where no solutions exist if continue increasing μ. This point is known as
an SNB point. Mathematically, the power flow Jacobian is singular at an
SNB point as a simple zero eigenvalue emerges, while the power flow
Jacobian is nonsingular elsewhere [1,15].

Next, we introduce the concept of LIB. Assume a generator hits its
reactive power limit at a certain load level, then the corresponding bus
losses voltage control capability and changes from a PV bus to a PQ bus.
We refer to this point as a bus type switching (BTS) point, and the
corresponding bus as the BTS bus. For example, two curves intersect at
a BTS point in Fig. 2(a), where the blue1 nose curve is the fixed-V curve
which ignores the reactive power limit of the concerned generator, and
the red nose curve is the fixed-Q curve where the reactive power gen-
eration is fixed to its limit value. At the BTS point in Fig. 2(a), the power
flow solution is switched from the upper part of fixed-V curve to the
lower part of fixed-Q curve. This BTS point is called an LIB point, which
is regarded non-operable as it induces negative V-Q sensitivities and

1 For interpretation of color in Fig. 2, the reader is referred to the web version
of this article.
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