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A set D of vertices in a graph G is an efficient dominating set (e.d.s. for short) of G if D is 
an independent set and every vertex not in D is adjacent to exactly one vertex in D . The 
efficient domination (ED) problem asks for the existence of an e.d.s. in G . The minimum 
weighted efficient domination problem (MIN-WED for short) is the problem of finding 
an e.d.s. of minimum weight in a given vertex-weighted graph. Brandstädt, Fičur, Leitert 
and Milanič (2015) [3] stated the running times of the fastest known polynomial-time 
algorithms for the MIN-WED problem on some graphs classes by using a Hasse diagram.
In this paper, we update this Hasse diagram by showing that, while for every integer d such 
that d = 3k or d = 3k + 2, where k ≥ 1, the ED problem remains NP-complete for graphs of 
diameter d, the weighted version of the problem is solvable in time O(|V (G)| + |E(G)|) in 
the class of diameter three bipartite graphs and in time O(|V (G)|5) in the class of diameter 
three planar graphs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a simple graph. The distance between 
two vertices u and v of a connected graph G , denoted 
dG(u, v), is the number of edges in a shortest path from 
u to v . The eccentricity eG(u) of a vertex u, of a con-
nected graph G , is max{dG (u, v)|v ∈ V (G)}. The radius of 
a connected graph G , rad(G), is the minimum eccentricity 
among the vertices of G , while the diameter of G , diam(G), 
is the maximum eccentricity.

A neighbor of a vertex v in the graph G is a vertex ad-
jacent to v . The open neighborhood of v , denoted NG (v), is 
the set of all neighbors of v . The closed neighborhood of v
is NG [v] = {v} ∪ NG(v). For a subset S of vertices of G , the 
closed neighborhood of S , denoted NG [S], is 

⋃
v∈S NG [v]. 

For k ≥ 1, we use the notation [k] = {1, . . . , k}. Recall that 
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the path graph and the complete graph on n vertices are de-
noted by Pn and Kn , respectively.

A set D of vertices in a graph G is an efficient domi-
nating set (e.d.s. for short) of G if D is an independent 
set and every vertex not in D is adjacent to exactly one 
vertex in D . Note that not every graph has an e.d.s. The 
efficient domination (ED) problem asks for the existence 
of an e.d.s. in G . The minimum weighted efficient domina-
tion problem (MIN-WED for short) is the problem of find-
ing an efficient dominating set of minimum weight in a 
given vertex-weighted graph. The notion of efficient dom-
ination was introduced by Biggs [2] under the name per-
fect code. Later, Bange, Barkauskas and Slater [1] showed 
that the ED problem is NP-complete. Furthermore, they 
showed that the ED problem is solvable in polynomial 
time on trees. Many papers have studied the complexity 
of the ED problem and also the weighted version of the 
ED problem on special graph classes. Brandstädt et al. [3]
presented an interesting Hasse diagram of the poset of 
most of such graph classes. For each class, they stated the 
complexity of weighted version of the ED problem. In par-
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ticular, the ED problem is known to be NP-complete [5]
for 2P3-free graphs and thus for P7-free graphs and solv-
able in polynomial time for weighted version of the ED 
problem on P5-free and also P6-free graphs. Brandstädt, 
Milanič and Nevries [4] presented polynomial-time algo-
rithms for weighted version of the ED problem for var-
ious subclasses of 2P3-free graphs as well as of P7-free 
graphs, including (P2 + P4)-free graphs and other classes. 
Moreover, they showed in [4] that the ED problem is NP-
complete for planar bipartite graphs with maximum de-
gree three. Recently, Brandstädt and Mosca [5] found an 
O(|V (G)|5|E(G)|) time solution for the weighted version 
of the ED problem on P6-free graphs which improved the 
time bound of (at least) O(|V (G)|576) due to Lokshtanov 
et al. [6]. Moreover, they showed in [5] that the weighted 
version of the ED problem is solvable in linear time for 
P5-free graphs. According to the mentioned results, all 
open questions regarding the complexity of the ED prob-
lem on Pk-free graphs were answered.

Now, we focus on similar questions for the complex-
ity of the ED problem on graphs of diameter k. Note that 
for every k ≥ 2, every connected Pk-free graph is of diam-
eter at most k − 2. In particular, this implies that the ED 
problem on graphs of diameter at most three, resp. four, 
is at least as difficult as on P5-free, resp. P6-free graphs. 
It is easy to see that a graph G of diameter two has an 
e.d.s. if and only if rad(G) = 1. Therefore, the ED problem 
is solvable in linear time for graphs of diameter two. To 
the best of our knowledge, the question for the complexity 
of the ED problem on graphs of diameter k, where k ≥ 3, 
remained unsolved. In this paper, we prove that for ev-
ery integer d such that d = 3k or d = 3k + 2, where k ≥ 1, 
the ED problem remains NP-complete for graphs of diame-
ter d. Furthermore, we show that the MIN-WED problem is 
solvable in time O(|V (G)|5) in the class of diameter three 
planar graphs. Finally, we present a simple algorithm for 
the MIN-WED problem in time O(|V (G)| + |E(G)|) for the 
class of diameter three bipartite graphs.

The main results of this paper are the following:

1. In Section 2, by using a new graph construction, which 
we call a semi-Mycielski graph, we prove that the ED 
problem is NP-complete on diameter three graphs. 
Furthermore, by using the reduction establishing NP-
completeness of the ED problem for chordal graphs 
due to Yen and Lee [7, Theorem 2], we show that the 
ED problem is NP-complete on diameter five graphs.

2. In Section 3, we study the complexity status of the 
ED problem on graphs with larger diameter. We prove 
that for every integer d such that d = 3k or d = 3k + 2, 
where k ≥ 1, the ED problem remains NP-complete for 
graphs of diameter d.

3. In Section 4, we show that if a planar graph G of di-
ameter three has an e.d.s., then G has an e.d.s. of size 
at most 4. Thus, we obtain an O(|V (G)|5) time algo-
rithm for solving the MIN-WED problem on diameter 
three planar graphs. Finally, we present an algorithm 
in time O(|V (G)| + |E(G)|) for solving the MIN-WED 
problem on diameter three bipartite graphs.

2. Graphs with small diameter

Our aim in this section is to prove that the ED problem 
for the class of diameter three graphs and also for the class 
of diameter five graphs is NP-complete.

Theorem 1. The ED problem is NP-complete on diameter three 
graphs.

In order to prove Theorem 1, we define the semi-
Mycielski graph of a graph G . Let G be a graph with 
vertex set V (G), where V (G) = {v1, v2, . . . , vn}. The semi-
Mycielski graph of G , denoted R(G), is the graph obtained 
from G by taking a vertex-disjoint copy of a complete 
graph Kn with vertex set V (Kn) = {u1, u2, . . . , un} and join 
ui to NG [vi] for every i ∈ [n].

The following lemma proves that if G has diameter at 
least three, then the vertices of R(G) have eccentricity 2
or 3. Moreover, R(G) has diameter three.

Lemma 2. Let G be a graph with the vertex set {v1, v2, . . . , vn}
such that diam(G) ≥ 3. Then the graph R(G) with the vertex 
set {v1, v2, . . . , vn} ∪ {u1, u2, . . . , un} has the following prop-
erties:

(i) For all i ∈ [n], we have eR(G)(vi) ≤ 3.
(ii) For all i ∈ [n], we have eR(G)(ui) = 2.

(iii) There are at least two distinct vertices vs and vt in V (G)

such that eR(G)(vt) = eR(G)(vs) = 3.
(iv) diam(R(G)) = 3.

Proof. Let v j ∈ V (G) for some j ∈ [n]. Consider an arbi-
trary vertex vi ∈ V (G) for some i ∈ [n]. If dG(v j, vi) ≥ 4, 
then in the graph R(G), there is a path, v j, u j, ui, vi , 
of length three from v j to vi . Thus, dR(G)(v j, vi) ≤ 3. If 
dG (v j, vi) ≤ 3, then it is easy to see that dR(G)(v j, vi) =
dG (v j, vi) ≤ 3. Now consider an arbitrary vertex ui ∈
{u1, u2, . . . , un}. If i = j, then dR(G)(v j, ui) = 1. Otherwise, 
if i �= j and vi v j /∈ E(R(G)), then dR(G)(v j, ui) = 2, since 
there is a path v j, u j, ui of length two from v j to ui . 
If i �= j and vi v j ∈ E(R(G)), then by definition of R(G), 
v jui ∈ E(R(G)). Hence, dR(G)(v j, ui) = 1. Thus, for an ar-
bitrary vertex x of V (R(G)), we have dR(G)(v j, x) ≤ 3. It 
follows that eR(G)(v j) ≤ 3, establishing (i). The proof of (ii) 
is similar to (i). Thus, diam(R(G)) ≤ 3. Since diam(G) ≥ 3, 
there are at least two distinct vertices vs and vt in V (G)

such that eG(vt) = eG(vs) ≥ 3. It is easy to see that 
eR(G)(vt) = eR(G)(vs) = 3. Therefore, diam(R(G)) = 3. This 
completes the proof of Lemma 2. �

The vertices of eccentricity two play an important role 
in the graph R(G). The following lemma shows that such 
vertices are not in any e.d.s. of R(G).

Lemma 3. If u is an arbitrary vertex of a graph G such that 
eG(u) = 2, then for every e.d.s. D of G, u /∈ D.

Proof. Suppose, to the contrary, that u ∈ D . Since
eG(u) = 2, we have NG [NG [u]] = V (G). By definition of 
e.d.s., we note that NG [NG [u]] ∩ D = {u}. Thus, D = {u}. 
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