
Information Processing Letters 140 (2018) 37–41

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Bitcoin private key locked transactions

Sergi Delgado-Segura ∗, Cristina Pérez-Solà, Jordi Herrera-Joancomartí, 
Guillermo Navarro-Arribas

Department of Information Engineering and Communications, Universitat Autònoma de Barcelona, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 April 2017
Received in revised form 11 May 2018
Accepted 19 August 2018
Available online 24 August 2018
Communicated by S. Faust

Keywords:
Bitcoin
Cryptocurrencies
Scripting
Smart contracts
Cryptography

Bitcoin smart contracts allow the development of new protocols on top of Bitcoin itself. 
This usually involves the definition of complex scripts, far beyond the requirement of a 
single signature. In this paper we introduce the concept of private key locked transactions, 
a novel type of transactions that allows the atomic verification of a given private key 
(belonging to an asymmetric key pair) during the payment execution.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Bitcoin transactions require the execution of a contract, 
that defines the terms under which the transaction can ac-
tually be redeemed. The contract is defined by the scripts 
provided by the sender (locking script) and the receiver or 
redeemer of the transaction (unlocking script).

Different locking conditions can be defined. For in-
stance, hash locked transactions require the redeemer to 
prove he knows the preimage of a given hash in order to 
redeem the output. So that to create this construction, the 
transaction output includes the value of the hash h, such 
that h = H(m) for some m, and a script that specifically 
asks for the preimage of h (where H is a cryptographic 
hash function). Then, the output can only be spent by pro-
viding a preimage m, whose hash is exactly h.

Hash locks have recently gained popularity in the Bit-
coin system because they are used, in combination with 
time locks, to create bidirectional micropayment chan-
nels [1,2]. This kind of channels allows to securely transfer 

* Corresponding author.
E-mail address: sdelgado@deic.uab.cat (S. Delgado-Segura).

Bitcoins between parties minimizing the amount of trans-
actions stored in the blockchain.

The specific case of a hash locked transaction where the 
preimage m is a symmetric key is of special interest as a 
building block for protocols that operate on top of Bitcoin. 
For example, a possible idea behind this kind of schemes 
is to encrypt data using a symmetric key cryptosystem, re-
lease the encrypted data, and then create a hash locked 
output where the unlocking value corresponds to the sym-
metric key used to encrypt the data. The amount of bit-
coins deposited into that output corresponds to the price 
that is going to be payed for the ability to decrypt (and 
thus obtain) the data. In order to collect the bitcoins de-
posited into the output, the symmetric key must be dis-
closed, thus allowing the decryption of the data [3].

Extending this idea, in this paper, we introduce and 
propose private key locked transactions where the locked 
value is precisely a private key from an asymmetric key 
pair. Note that standard scripts requiring a signature are 
already useful to prove the possession of a private key 
(because the private key is needed to create the signa-
ture). However, the scheme we propose requires not only 
to prove that the private key is known in order to redeem 
an output but also to reveal that private key.

https://doi.org/10.1016/j.ipl.2018.08.004
0020-0190/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.ipl.2018.08.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:sdelgado@deic.uab.cat
https://doi.org/10.1016/j.ipl.2018.08.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2018.08.004&domain=pdf


38 S. Delgado-Segura et al. / Information Processing Letters 140 (2018) 37–41

2. Private key locked transactions

In order to build a transaction output that requires the 
disclosure of a specific private key to be redeemed, we 
propose to use a well known vulnerability in the ECDSA 
signature scheme. In our case, such vulnerability becomes 
a property of ECDSA, since it allows us to nicely implement 
the key disclosure upon payment.

2.1. ECDSA vulnerability

ECDSA (Elliptic Curve Digital Signature Algorithm) is the 
cryptographic algorithm used by Bitcoin to create and val-
idate digital signatures. ECDSA has a set of system param-
eters: an elliptic curve field and equation C, a generator G
of the elliptic curve C, and a prime q which corresponds to 
the order of G . The values for these parameters are defined 
to be secp256k1 [4] for Bitcoin.

Let use denote by ∗ the operation of multiplying an el-
liptic curve point by a scalar. Given a specific configuration 
of the parameters and a private key d, the ECDSA signature 
algorithm over the message m is defined as follows:

1. Randomly choose an integer k in [1, q − 1]
2. (x, y) = k ∗ G
3. r = x mod q
4. s = k−1(m + rd) mod q
5. Output1: sig(m) = (r, s)

The ECDSA signature scheme is therefore probabilistic, 
that is, there exist many different valid signatures made 
with the same private key for the same message. The se-
lection of a specific signature from the set of valid ones is 
determined by the election of the integer k.

There exists a well known ECDSA signature vulnerabil-
ity (also present in the non-elliptic curve signature scheme 
of ElGamal and its popular variant, DSA [5]) by which an 
attacker that observes two signatures of different messages 
made with the same private key is able to extract the pri-
vate key if the signer reuses the same k. Therefore, the 
selection of k is critical to the security of the system.

Indeed, given two signatures that have been created us-
ing the same k and the same private key, sig1(m1) = (r, s1)

and sig2(m2) = (r, s2) with m1 �= m2, an attacker that ob-
tains m1, sig1, m2, sig2 may derive the private key d:

1. Recall that, by the definition of the signature scheme:

s1 = k−1(m1 + rd) mod q ⇒ ks1 = m1 + rd mod q

s2 = k−1(m2 + rd) mod q ⇒ ks2 = m2 + rd mod q

Note that, since r is deterministically generated from k
and the fixed parameters of the scheme, the r of both 
signatures will be the same.

2. The attacker learns k by computing k = m2−m1
s2−s1

3. The attacker learns the private key d by computing d =
s1k−m1

r or d = s2k−m2
r

1 A new integer k is chosen and the procedure is repeated if either s or 
r are 0.

Moreover, the leakage of a private key can also be 
produced in situations where similar k values are gener-
ated [6,7].

Taking advantage of such vulnerability to disclose a pri-
vate key in Bitcoin has been previously used for times-
tamping in data commitment schemes [8].

Some Bitcoin wallets adopted deterministic ECDSA after 
this vulnerability was found to affect some Bitcoin trans-
actions [9–11].

2.2. Private key disclose mechanism

Our proposed scheme makes use of the aforementioned 
ECDSA vulnerability to perform targeted private key disclo-
sure within Bitcoin. The private key disclosure mechanism 
we propose allows to construct transaction outputs that 
need to reveal a private key in order to be redeemed, in 
such a way that we ensure the revealed private key is the 
counterpart of a certain public key.

Let {P K , S K } be an ECDSA key pair belonging to Bob 
(with Addr(P K ) the Bitcoin address associated to it) and 
sigprev an existing signature made with S K . Alice (that is 
interested in acquiring Bob’s private key) needs to know 
the value of the previous signature sigprev , in order to 
be able to request, afterwards, a second signature made 
with the same k. The previous signature may appear in 
the blockchain as the input script of an existing transac-
tion. For instance, if some amount of bitcoins were sent to 
Addr(P K ) with a standard pay-to-pubkey-hash script out-
put and Bob has already transferred those bitcoins to an-
other output by showing a valid signature made with S K , 
sigprev will be publicy available in the Bitcoin blockchain. 
Therefore, any observer will know this value and the 
signed message m will correspond to a transaction hash.

Once an existing previous signature sigprev is known 
by Alice, she creates a transaction with an output that re-
quires a second signature sig to be spent. However, instead 
of using the classical pay-to-pubkey-hash script, she uses a 
special script that forces Bob (the redeemer) not only to 
prove he has the private key S K associated to the given 
address Addr(P K ) by creating a valid signature, but also 
to deliver a signature that has exactly the same k value 
that was used when creating sigprev . The output may also 
have a time lock that allows Alice to get back her bitcoins 
if Bob chooses not to reveal the private key.

Doing so accomplishes two purposes: on the one hand, 
Bob proves he knows the private key associated to the 
public key by generating a signature that correctly val-
idates with that public key; on the other hand, Bob is 
implicitly revealing the private key associated to the same 
public key. Note that Bob does not directly provide the pri-
vate key, but provides information from which the private 
key can be derived.

Moreover, the operation is atomic, in the sense that Bob 
gets Alice’s bitcoins (the amount deposited into the out-
put) only when Alice gets Bob’s private key (derived from 
the two signatures by exploiting the reusage of k vulnera-
bility).

Furthermore, unlike when revealing symmetric keys 
with hash locks, the private key disclosure mechanism al-



Download English Version:

https://daneshyari.com/en/article/9952158

Download Persian Version:

https://daneshyari.com/article/9952158

Daneshyari.com

https://daneshyari.com/en/article/9952158
https://daneshyari.com/article/9952158
https://daneshyari.com

