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Two families of input-deterministic weighted automata over semirings are considered: 
purely sequential automata, in which terminal weights of states are either zero or unity, 
and sequential automata, in which states can have arbitrary terminal weights. The class 
of semirings over which all weighted automata admit purely sequential equivalents is 
fully characterised. A similar characterisation is proved for sequential automata under an 
assumption that all elements of the underlying semiring have finitely many multiplicative 
left inverses, which is in particular true for all commutative semirings and all division 
semirings.
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1. Introduction

Classical nondeterministic finite automata admit a well 
known extension, in which each transition is weighted 
(typically) by an element of some semiring [7,22]. Such 
automata – usually known as weighted automata – realise 
formal power series instead of recognising languages, and 
they have been studied extensively both from the theoret-
ical point of view and in connection with their practical 
applications. The reader might consult [7] for an overview 
of some of the most important research directions.

For applications such as natural language processing 
[16,20], input-determinism of weighted automata often 
turns out to be crucial. This basically means that the 
automaton has precisely one state with nonzero initial 
weight and there is at most one transition for each in-
put symbol leading from each state. However, it is well 
known that not all weighted automata can be determinised 
[19,21]. The research has thus focused mainly on provid-
ing sufficient conditions – both on the automaton and the 

✩ Partially supported by the grant VEGA 2/0165/16.
E-mail address: kostolanyi@fmph.uniba.sk.

underlying semiring – under which a weighted automa-
ton admits a deterministic equivalent, and on devising ef-
ficient determinisation algorithms for automata satisfying 
such conditions [1,15,20,21].

We shall focus here on a slightly different question: 
over which semirings all weighted automata can be deter-
minised? This in fact amounts to the study of deterministic 
weighted automata from a negative point of view, as we 
shall see that the class of such semirings is fairly con-
strained.

More precisely, we shall deal with this question for two 
classes of deterministic weighted automata: for purely se-
quential weighted automata, in which terminal weights 
of states might only be chosen as zero or unity of 
the underlying semiring, and for sequential weighted au-
tomata, in which terminal weights can be arbitrary (the 
term “deterministic weighted automata” usually refers to 
the latter [21]). This terminology follows Lombardy and 
Sakarovitch [19]; it may differ significantly in other sources 
(in particular, purely sequential automata are often called 
sequential, while sequential automata are called subse-
quential [20]).
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We shall prove that weighted automata over S always 
admit purely sequential equivalents if and only if S is a lo-
cally finite division semiring. Moreover, local finiteness of 
S is known to be sufficient to guarantee that all weighted 
automata over S have sequential equivalents [19]. We shall 
prove that if S has no element with infinitely many multi-
plicative left inverses, then this is also a necessary con-
dition. In particular, if S is commutative or a division 
semiring, then weighted automata over S can always be 
sequentialised if and only if S is locally finite.

Finally, let us mention that there is a branch of research 
motivated by quantitative formal verification dealing with 
weighted – or quantitative – automata over various struc-
tures beyond semirings [2–6,8–11,18]. We shall neverthe-
less confine ourselves to the classical setting of semirings 
in this article, making theoretical analysis more tractable. 
Possible extensions of the results presented herein to 
structures more general than semirings are left for further 
research.

2. Preliminaries

A monoid is a triple (M, ·, 1), where M is a set, · is an 
associative binary operation on M , and 1 is a neutral ele-
ment with respect to ·. A commutative monoid is a monoid 
(M, ·, 1) such that · is commutative. A semiring is a quin-
tuple (S, +, ·, 0, 1) such that (S, +, 0) is a commutative 
monoid, (S, ·, 1) is a monoid, the operation · distributes 
over + both from left and from right, and 0 · a = a · 0 = 0
holds for all a in S . A commutative semiring is a semiring 
such that the monoid (S, ·, 1) is commutative. A division 
semiring [12] is a (not necessarily commutative) semiring 
such that (S − {0}, ·, 1) is a group, i.e., each nonzero el-
ement of S has a multiplicative inverse. We shall often 
simply write S for a semiring (S, +, ·, 0, 1).

A subsemiring of a semiring (S, +, ·, 0, 1) is a semiring 
(S ′, +, ·, 0, 1) such that S ′ ⊆ S (and +, · are restricted to 
S ′ × S ′). If moreover X ⊆ S is a set, the subsemiring of S
generated by X is the intersection of all subsemirings of S
containing X . A semiring S is finitely generated if it is gen-
erated by some finite subset of S . A semiring S is locally 
finite if every finitely generated subsemiring of S is finite. 
Submonoids, finitely generated monoids, and locally finite 
monoids are defined similarly.

A formal power series over a semiring S and over an al-
phabet � is a mapping r : �∗ → S . It is customary to write 
(r, w) instead of r(w) for the value of r on a word w
in �∗; the formal power series r itself is then written as

r =
∑

w∈�∗
(r, w)w.

The set of all formal power series over S and � is denoted 
by S〈 〈�∗〉 〉.

Let r1 and r2 be in S〈 〈�∗〉 〉. The series r1 + r2 is then 
defined by (r1 + r2, w) = (r1, w) + (r2, w) for all w in �∗
and the series r1 · r2 is defined by

(r1 · r2, w) =
∑

u,v∈�∗
uv=w

(r1, u)(r2, v)

for all w in �∗ . The set S〈 〈�∗〉 〉 constitutes a semiring to-
gether with these two operations [7].

Let S be a semiring. A proper weighted automaton [7]
over S is a sextuple A = (Q , �, T , ν, ι, τ ), where Q is 
a nonempty finite set of states, � is a (finite) alphabet, 
T ⊆ Q × � × Q is a set of transitions, ν : T → S is a tran-
sition weighting function, ι : Q → S is an initial weighting 
function, and τ : Q → S is a terminal weighting function.

Moreover, a run in A = (Q , �, T , ν, ι, τ ) is a word γ =
p1[p1, c1, q1]p2[p2, c2, q2] . . . pn[pn, cn, qn]pn+1 in (Q T )∗ Q
such that n is a nonnegative integer and qi = pi+1 for 
i = 1, . . . , n. We shall denote by SA(γ ) := p1 the source
of the run γ , and by DA(γ ) := pn+1 the destination
of γ . The label of a run γ in A is given by λA(γ ), 
where λA : (Q ∪ T )∗ → �∗ is a homomorphism such that 
λA(q) = ε for all q in Q and λA([p, c, q]) = c for all 
[p, c, q] in T . The weight of a run γ in A is given by 
WA(γ ), where WA : (Q ∪ T )∗ → (S, ·, 1) is a monoid ho-
momorphism such that WA(q) = 1 for all q in Q and 
WA([p, c, q]) = ν([p, c, q]) for all [p, c, q] in T . If A is 
clear from the context, we shall usually write S(γ ), D(γ ), 
λ(γ ), and W (γ ) instead of SA(γ ), DA(γ ), λA(γ ), and 
WA(γ ), respectively.

Let us denote by R(A) the set of all runs in A and by 
R(A, w), where w is in �∗ , the set of all γ in R(A) such 
that λ(γ ) = w . The behaviour of A then is a power series 
‖A‖ defined by

(‖A‖, w) =
∑

γ ∈R(A,w)

ι(S(γ ))W (γ )τ (D(γ ))

for all w in �∗ . Note that this sum is always finite, and 
thus well defined.

We shall always assume that ν([p, c, q]) �= 0 for all 
[p, c, q] in T – this is without loss of generality, as hav-
ing a transition with zero weight is clearly equivalent to 
having no transition at all.

Let A = (Q , �, T , ν, ι, τ ) be a proper weighted automa-
ton over a semiring S . The automaton A is sequential if q0
in Q exists such that ι(q0) �= 0 and ι(q) = 0 for all q �= q0
in Q , and if at most one q in Q with [p, c, q] in T exists for 
each p in Q and c in �. Moreover, A is purely sequential
if it is sequential and if τ (q) is in {0, 1} for each q in Q . 
Finally, A is unambiguous if R(A, w) contains at most one 
run γ with ι(S(γ ))W (γ )τ (D(γ )) �= 0 for each w in �∗ .

Remark 2.1. A purely sequential automaton may contain 
a state with initial weight equal neither to 0, nor to 1. 
However, it is easy to see that when it comes to series 
realised by purely sequential automata, restricting initial 
weights to 0 and 1 would only affect possible weights of 
the empty word.

Remark 2.2. We shall confine ourselves to the study of 
proper weighted automata, i.e., automata without transi-
tions labelled by the empty word. This clearly has no effect 
on our results. Moreover, all weighted automata are under-
stood to be proper in what follows.

It is well known that each weighted automaton over 
a locally finite semiring S admits a sequential equiva-
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