
ARTICLE IN PRESS 

JID: CAEE [m3Gsc; January 6, 2018;10:13 ] 

Computers and Electrical Engineering 0 0 0 (2018) 1–9 

Contents lists available at ScienceDirect 

Computers and Electrical Engineering 

journal homepage: www.elsevier.com/locate/compeleceng 

Transmission power control of wireless sensor networks 

based on optimal connectivity 

� 

Yefei Han 

a , Guangwei Bai b , ∗, Gongxuan Zhang 

a 

a Department of Computer Science and Engineering, NanJing University of Science and Technology , Nanjing Jiangsu, China 
b Department of Electronic and Information Engineering, NanJing University of Technology, Nanjing Jiangsu, China 

a r t i c l e i n f o 

Article history: 

Received 30 May 2017 

Revised 20 December 2017 

Accepted 21 December 2017 

Available online xxx 

Keywords: 

Satellite networks 

Traffic prediction 

Spatiotemporal correlation 

Least square support vector machine 

a b s t r a c t 

To develop a short-term traffic load prediction model for satellite networks, a prediction 

algorithm based on spatiotemporal correlation and least square support vector machine 

(STLS-SVM) is presented. The prediction model fully exploits the regularity and periodic- 

ity of satellite constellations and uses the lag correlation coefficients to determine which 

satellite pairs have the highest spatiotemporal correlation. Then, the traffic time sequences 

of the most highly correlated satellites are taken as input feature vectors for training the 

LS-SVM for short-term traffic prediction. A simulation test shows that the algorithm has 

higher network flow prediction accuracy and that using the spatiotemporal correlation im- 

proves the predictive performance. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Satellite networks that provide seamless coverage have become indispensable components of the next-generation global 

communication infrastructure [1] . Various applications and traffic such as data, audio, video streaming, and multimedia are 

currently carried by satellite networks; consequently, the aggregated traffic has a huge volume and is complicated [2] . The 

design of a satellite traffic prediction model with cognitive characteristics enables the network to provide more reasonable 

bandwidth distribution, flow control, routing control, admission control, and error control, and it is an effective way to 

improve the quality of service. 

There are currently many prediction algorithms such as the time sequence model [3] , Kalman filtering model [4] , and 

neural network model [5] , and certain advances have been made. Neural network models are often applied to network traffic 

prediction because of their good capacity for nonlinear approximation and adaptive learning. However, neural networks 

are easily overfitted and suffer from local minima and the choice of network structure [6] . On the other hand, support 

vector machine (SVM) and least square support vector machine (LS-SVM) algorithms based on statistical learning theory 

can address some of the flaws of neural networks. They can find global minima and have many unique advantages for use 

with small samples [7–9] . 

In satellite networks, each satellite provides access to services for all users within its coverage area. The traffic load time 

sequence of a specific satellite is closely related to its ground track. Satellite networks are highly deterministic systems. 

Their satellites travel on fixed orbits. Because of the symmetry of satellite constellations, different satellites may have similar 
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ground tracks. Moreover, the daily evolution of the terrestrial traffic intensity shows a strong daily periodicity [10] . It is not 

hard to imagine that the traffic load time sequences of different satellites may exhibit some spatiotemporal correlation. 

In this paper, a prediction model based on spatiotemporal correlation and least square (STLS) SVM is proposed for pre- 

dicting the short-term traffic load of satellite networks. First, the lag cross-correlation function [11] is used to select the 

satellites that have the highest spatiotemporal correlation with the target satellite and their corresponding time delay k . 

Then the traffic time sequences of these spatiotemporally correlated satellites are entered into the STLS-SVM as the input 

feature vector for short-term traffic prediction. 

To the best of our knowledge, we are the first to apply the lag cross-correlation function to fully exploit the spatiotem- 

poral correlation of satellite traffic time sequences and propose an STLS-SVM algorithm for short-term traffic prediction for 

satellite networks. 

The remaining paper is described as follows: Section 2 describes the model of spatiotemporal correlation mining. The 

simulation results are discussed in the Section 3 . The paper is then concluded. 

2. Model description 

2.1. Spatiotemporal correlation mining 

The lag cross-correlation function [11] is a method to detect the lag correlations between data time sequences. Suppose 

that X is a discrete sequence of numbers { x 1 , x 1 , …,x n }; then the L -lag correlation function between two time sequences X 

and Y of equal length n is defined as 

R (l) = 

∑ n 
t= l+1 ( xt − x ) ( yt − l − y ) √ ∑ n 

t= l+1 ( xt − x ) 
2 
√ ∑ n −l 

t=1 ( yt − y ) 
2 

x = 

1 

n − l 

n ∑ 

t= l+1 

xt , y = 

1 

n − l 

n −l ∑ 

t=1 

yt , (1) 

where R ( l ) denotes the L -lag cross-correlation coefficient when X is delayed by l ( l ≥ 0). Further, x and y denote the means 

of X and Y , respectively. For a lag l , we consider only the common part of X and the shifted Y , that is, only the n − l time 

ticks. Two sequences are strongly correlated when their correlation coefficient is close to 1 or −1. When the value is 0, 

the two sequences are not related at all. In our scheme, we seek strong correlations. Therefore, the absolute value of the 

correlation coefficient | R ( l )| is used in the measurement procedure. 

2.2. Least square support vector machine (LS-SVM) 

LS-SVM is an improved SVM algorithm that uses the quadratic loss function to replace the insensitive loss function in 

SVM. The SVM secondary optimisation procedure is changed to solving a linear equation by building a loss function, which 

improves the solving speed [12] . 

For the sample set {( x i , y i ), i = 1,…, n}, where x i ∈ R d is an input vector, and y i is the corresponding output, the input 

data x i are transformed to a higher-dimensional feature space by φ( x ). The LS-SVM optimal classification plane function is 

f (x ) = w 

T ϕ(x ) + b (2) 

where w ∈ R d is the weight vector, and b is the offset. 

According to the structural risk minimisation principle, LS-SVM determines the optimal weight vector and the offset by 

minimising the cost vector J : 

min 

w,b, e 
J(w, e ) = 

1 

2 

w 

T w + 

C 

2 

n ∑ 

i =1 

e 2 i 

s.t. 

y i = w 

T ϕ(x ) + b + e i , i = 1 , 2 , · · · , n (3) 

where C is the penalty parameter, and ei ∈ R is the prediction error. 

The constrained optimisation above is changed to an unconstrained dual space optimisation by introducing the Lagrange 

multiplier, and the Lagrange function is established: 

L (w, b, e , α) = J(w, e ) −
n ∑ 

i =1 

αi 

(
w 

T ϕ( x i ) + b + e i − y i 
)

(4) 

where αi ∈ R is the Lagrange multiplier. 
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