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In this work, a novel forecasting probability distribution model is presented. Probability 

distribution plays a role in the function of probability values. Therefore, forecasting the 

probability distribution function is a challenging process. To that end, the method de- 

scribed in this work loosens the control conditions of the given data set. Subsequently, 

statistical methods can be applied to the resulting sample data. The distribution functions 

are then fitted using the cubic spline interpolation method. In this work, the naive Bayes 

and the Bayesian network methods are adjusted to handle the small sample problem. In 

addition, the maximal extension clusters are used to determine the conditional function. 

Two data sets from the UCI repository and a custom data set are used to validate the 

forecasting model. The experiments show the proposed method can generate an accurate 

distribution function. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Estimating the probability distribution function is a classical machine learning problem. Probability distribution is a use- 

ful tool for describing random variables because a single probability value does not adequately describe the variable. Prob- 

ability distribution is a mathematical description of a random phenomenon. The base of this description is the probability 

of events. Thus, probability distribution requires a more complicated model than the probability of events. Moreover, prob- 

ability distribution has been widely applied in many fields, such as lightning current amplitude [1] , wind speed [2] , and 

multimeric systems [3] . Obtaining the probability distribution function of a large sample set is a relatively easy task. How- 

ever, in the case of a small sample set, this traditional method may not be applicable. 

The small sample size problem (SSSP) is a hot topic in current academic research. For example, in tasks pertaining face 

recognition [4] or speech emotion [5] , the lack of large sample size is a challenge. To that end, loosen control condition 

(LCC) [6] has been applied as valid method for a small sample set. Virtual sample generation (VSG) [7] has also been used 

to address the SSSP. Li Der-Chiang proposed a genetic algorithm based on virtual sample generation, derived from LCC and 

VSG [8] . In [9] , Zhang Cui-Cui proposed an ensemble framework to generate new data from the distribution of the original 

samples. 

The bootstrap method has been widely used to address the SSSP. First, several bootstrap samples are generated by re- 

sampling the original data set. Then, the probability distribution of each bootstrap sample is calculated, thereby enabling the 
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estimation of the probability distribution of the original dataset. Thus, the bootstrap method can be utilized for estimating 

the parameters in the case of small samples. 

The conventional small sample learning methods mainly focus on a possible value of the target attribute; however, this 

value is only related to the probability of events. Even so, forecasting probability distribution of in the case of small samples 

is a challenging problem. To that end, the proposed model, which is based on LCC and the Bayesian learning model, attempts 

to address this challenge. 

The remainder of this paper is organized as follows. Related work is reviewed in Section 2 . The proposed method is 

introduced in Section 3 . Experiments and results of the experimentation are described in Section 4 . The paper is concluded 

and the findings are presented in Section 5 . 

2. Basic concepts and principles 

Probability is a measure of the likelihood of an event occurring, and as such, there are two different theoretical expla- 

nations about probability. The first is a frequentist view that defines probability as an objective concept. The probability of 

an event is the limiting proportion of times that the event occurs from a long series of independent identical opportunities. 

The second explanation is the Bayesian probability view (also called subjective probability view), wherein the probability 

is regarded as an inner state rather than an objective property of the outside world [10] . The probability only denotes the 

degree of personal beliefs that the event occurred. 

According to the Bayesian view, all probabilities are conditional probabilities. The definition of conditions is related 

to subjective recognition. Moreover, different conditions are likely to result in different outcomes. Thus, several different 

schemes can be generated to select instances from the data set. Consider a data set of seismic records from all regions of 

the world. The task is to obtain the distribution of intermediate-focus earthquakes in a certain region. Therefore, the sample 

should consist of seismic records from the same location. However, the probability of finding an earthquake instance that 

matches the exact condition is very low. The probability improves, however, when the definition of the location extends to 

a specific area surrounding the specific location. If the definition extends to across the world, it is equivalent to encompass- 

ing all the data sets. As the definition extends, the set contains seismic data with different characteristics. Therefore, the 

extension should be confined to meet the statistical requirements. 

According to the Bayesian probability view, the sample is the result of selection. The sample set can be extended by 

omitting some selected attribute value. Let us consider a universal set, and the sample set is just a subset of the universal 

set. The generation of the samples mainly depends on the selection criteria. Thus, a small sample may be generated by a 

highly strict selection criterion. In this work, selection [11] is defined as follows: 

Definition 1. Selection produces a horizontal subset of a given data set D , which consists of all the instances that satisfy the 

condition set C . The selection by C from D is denoted as σ ˆ C 
(D ) = { d| d ∈ D ∧ ̂

 C (d) = T } , where D is a subset of the Cartesian 

product of conditional attributes and a target attribute, namely D = X × Y, X = X 1 × X 2 × … × X k and 

ˆ C denotes a selection 

condition generated by the conjunction of conditions in C . 

Here, C is a group of constraints on X . Therefore, ˆ C (·) is a logical expression with a value of "T" or "F". For example, if 

C = { A 1 = a, A 2 = b, A 3 = c }, then 

ˆ C (d) = ( d. A 1 = a ) ∧ ( d. A 2 = b ) ∧ ( d. A 3 = c ) . 

Theorem 1. If D 1 = σ ˆ C 1 
(D ) , D 2 = σ ˆ C 2 

(D ) and C 1 ⊆C 2 , then D 2 ⊆D 1 . 

Proof. 1) If C 1 = C 2 , then we establish that D 1 = D 2 . 

2) If C 1 ⊂C 2 , and because D 2 = σ ˆ C 2 
(D ) , 

We have for each d ∈ D 2 , ˆ C 2 (d) = T . 

Moreover, given that C 1 ⊂C 2 , we have ˆ C 1 (d) = T . 

Thus, d ∈ D 1 is established. 

Therefore, D 2 ⊆D 1 . 

Corollary 1. If D 1 = σ ˆ C 1 
(D ) , D 2 = σ ˆ C 2 

(D ) and C 1 ⊆C 2 , then | D 1 | ≥ | D 2 |. 

Here, Corollary 1 shows that when the conditions become more stringent, the number of data will be reduced, and vice 

versa. Therefore, the data set may be expanded or shrunk by adjusting the condition set. 

Expansion of the data set is a conventional method applied to solving the SSSP. Therefore, the approach utilized to 

expand the data set, i.e., to loosen the conditions, is significant. Each constraint in the given condition set can generate a 

new single-constraint condition set. Moreover, each single-constraint condition can generate a conditional data set. Thus, 

the generated dataset may have more instances than the original one. Therefore, for sufficient instances, there may exist a 

function that fits the single-constraint conditions. Moreover, these conditional functions contain the complete information 

about the final distribution function. 

Parameter learning has been commonly applied to predict the conditional distribution. Parameter learning depends on 

the prior distribution type in the corresponding field. Unfortunately, in some cases, there is little information about the 

prior distribution type. According to the analytic geometry, the process of forecasting distribution is a process of fitting the 

plane curve. Therefore, the interpolation function can fit the distribution. Moreover, the cubic spline interpolation function 
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