
Journal of Information Security and Applications 42 (2018) 46–56

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

SWORD: Semantic aWare andrOid malwaRe Detector

Shweta Bhandari a , ∗, Rekha Panihar a , Smita Naval b , Vijay Laxmi a , Akka Zemmari c ,
Manoj Singh Gaur d

a Malaviya National Institute of Technology Jaipur (MNIT Jaipur), India
b National Institute of Technology Warangal (NIT Warangal), India
c LaBRI - University of Bordeaux, CNRS, Talence cedex 33405, France
d Indian Institute of Technology Jammu, J&K, India

a r t i c l e i n f o

Article history:

Keywords:

Android

Malware analysis

Semantic analysis

Information leakage

a b s t r a c t

Malicious android applications have become more advanced and severe threat to user privacy, confiden-

tiality, integrity, money, and device. The process of malware evolution mainly consists of modifications to

existing malware using repackaging of apps employing polymorphism, metamorphism and injecting ma-

licious code. The existing dynamic approaches can handle polymorphism, metamorphism and repacking

of apps but failed to address code injection at runtime, as it modifies the control/data flow. In this paper,

we present a semantic aware dynamic malware detection tool, SWORD. It encapsulates the semantics of

Android apps in such a way that makes it resilient towards injection-based evasion techniques. The in-

tuition behind specifying the semantics of apps lies in applying Asymptotic Equipartition Property (AEP)

inherited from information theory domain. The semantics of the app are captured using a sequence of

system-calls. To assess the efficacy of SWORD, we carried out comprehensive experiments on 60 0 0 ex-

ecution traces of 20 0 0 applications (10 0 0 malware apps belonging to 119 different families and 10 0 0

benign apps, selected randomly from 12,0 0 0 Google Play store apps). We obtain a detection accuracy of

94.2%. Moreover, we show that SWORD can cope with the code injection based evasion techniques.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Smartphone has become quite important to our day to day life

for social networking, online shopping, banking, etc. According to a

study made by Statista [1] , around 2.08 billion of the total popula-

tion are smartphone users. Nowadays, Android is the most popular

mobile operating system, with 85% of the worldwide smartphone

sales to end users in 2017 [2] . It is becoming the key target for

malware adversaries as it is open sourced and Android mobiles are

available at very low cost. Although, the Android OS added ‘app

verification, a security feature,’ yet banking trojans and other mali-

cious android apps are actively spreading. Over the past few years,

we are witnessing an upsurge in the events of malicious programs

in the form Android applications (apps). For instance, Android mal-

ware like SlemBunk and Marcher actively target US financial insti-

tutions customers [3] . Therefore, to ensure security and privacy of

an Android user, detection of malicious apps becomes primary line

of defence [4,5] .

∗ Corresponding author.

E-mail address: er.shwetabhandari@gmail.com (S. Bhandari).

Nowadays, detection of malicious apps is a challenging task

as these apps are embedded with numerous evasion techniques,

which put a question mark on the efficiency of existing detection

mechanisms. The popular evasion techniques include repackaging

of apps, anti-emulation, code-injection, polymorphism, metamor-

phism, and to name a few. Recent works [6–11] show that static

approaches are not able to capture evasion-aware malicious apps.

On the other hand, dynamic analysis operates by executing the

program code. It is more precise as no approximation or presump-

tion needs to be done [12] . Therefore, the effect of evasions like

repackaging, obfuscation, metamorphism, and polymorphism can

be invalidated by dynamic analysis technique [13] . However, these

techniques are completely dependent on the runtime sequences of

events.

To evade existing malware detection techniques, the malware

authors try to inject irrelevant or independent code at runtime.

There are mainly three ways [14] to inject code into already run-

ning Android application (1) using DexClassLoader , an Android

app can invoke the classes’ methods of any downloaded app during

runtime, (2) invoking API named as createPackageContext ,
an android app can load and invoke resources (images, files, and

codes) of other app [14] and (3) using OS shell [15] , an applica-

tion can redirect program control to some other code and also can

https://doi.org/10.1016/j.jisa.2018.07.003

2214-2126/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jisa.2018.07.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2018.07.003&domain=pdf
mailto:er.shwetabhandari@gmail.com
https://doi.org/10.1016/j.jisa.2018.07.003

S. Bhandari et al. / Journal of Information Security and Applications 42 (2018) 46–56 47

execute it. This injection alters the actual runtime sequence of

events, therefore in this paper, we propose a dynamic malware de-

tection technique named SWORD, that handles injection-based ma-

licious apps. To capture the actual semantics of Android apps, we

make use of system-call sequences because:

1. system-calls are independent of Android’s compilation and run-

ning environment whether it is Dalvik virtual machine (DVM)

or Android runtime (ART).

2. system-calls provide a gateway to access system-level services

and are required to instigate malicious attacks such as premium

calls, downloading other malicious apps, transferring bank cre-

dentials, etc [16,17] .

We outline a proactive semantic detection model for capturing

evasion-aware malicious Android apps. However, we do not claim

that our approach can detect every class of evasion-aware mal-

ware. Our approach is only capable of detecting malicious apps

that inject system-call at the runtime to evade the detection as

well as non-evasive apps. SWORD employs AEP property widely

deployed in the domain of information theory. This property states

that “there are few paths of a graph that concentrates almost all

information of the program under analysis”. To apply AEP, we ex-

tract system-call traces by extending QEMU process with strace

and Monkey tool [18] is used to stimulate the app. We estab-

lished the resemblance of system-call traces as the ergodic Markov

chain so that we can apply the phenomenon of AEP. We transform

the system-call sequences into sequential system-call graph (SSG).

Then, we find typical paths from SSG. Using typical paths, we con-

struct our learning and detection model. In summary, we make the

following contributions:

1. We design our model on the top of QEMU [19] and Monkey

tool [20] to automatically capture the run-time behavior of an

Android app in terms of system-call sequences.

2. We prove that acquired system-call traces represent the ergodic

Markov chain and therefore we can apply the AEP concept to

construct our semantic detector.

3. We compute the “typical paths” and use average logarithmic

branching factor (ALBF) of paths to create our feature vector.

Our feature vector is constructed using histogram binning tech-

nique. Further, we verify our semantic model using test samples

to differentiate malicious and benign Android apps.

4. We assess the resiliency of our approach by injecting thousands

of irrelevant calls into the traces of malicious Android apps. We

observe that the proposed approach sustained the system-call

injection attack.

The rest of the paper is organized as follows. We start by in-

troducing the background for the proposed approach in Section 2 .

We present the proposed work in Section 3 . In Section 4 , we show

the experimental setup and results to evaluate the proposed ap-

proach. In Section 5 , we enumerated some of the limitation pos-

sess by SWORD. The related work is discussed in Section 6 . Finally,

we give concluding remarks to our approach in Section 7 .

2. Background

We, now present some background on the ergodic markov

chain and AEP as both of these concepts are borrowed from in-

formation theory domain. This will give better readability to our

work.

2.1. Ergodic markov chains

Definition 1. A Markov chain is a discrete-time stochastic process

(X t) t ≥ 0 s.t. each random variable X t takes values in a discrete set S ,

called space state , and for any s, s ′ and s 0 , s 1 , . . . , s t−1 ∈ S,

P r
(
X t+1 = s | X t = s ′ , X t−1 = s t−1 , . . . , X 0 = s 0

)
= P r

(
X t+1 = s | X t = s ′

)
. (1)

If the set S is finite then the chain is said to be finite-state .

Remark 1. Eq. (1) is called memoryless property and it simply

means that, as time goes by, the process loses the memory of the

past.

The chain is characterized by the space state S and by its tran-

sition matrix P =

(
p i, j

)
(s i ,s j) ∈ S×S

, where,

p i, j = P r
(
X t+1 = s j | X t = s i

)
, ∀ t ≥ 0 , and ∀ (s i , s j) ∈ S × S. (2)

Note that the transition matrix P verifies two properties: (1) its

elements are all positive, and (2) each row sums to 1.

It is always possible to represent a finite-state Markov chain by

a transition graph G = (S, τ) where S is the space state and τ cor-

responds to the transition matrix: for any pair of states s i and s j
in S , (s i , s j) ∈ τ if and only if p i, j > 0. The graph G is, thus, an ori-

ented weighted graph. Given t ≥ 0, the distribution at time t of the

Markov chain is given by:

π(t)
s = P r (X t = s) , ∀ s ∈ S.

To characterize the chain completely, in addition to the space

state S and the transition matrix P , one needs to specify the initial

distribution :

π(0)
s = P r (X 0 = s) , ∀ s ∈ S.

Thus, knowing π0 =

(
π(0)

s

)
s ∈ S

and P , allows to compute π t = (
π(t)

s

)
s ∈ S

. Indeed:

π(t) = π(t−1) P = π(0) P t , ∀ t ≥ 1 .

Definition 2. A state s j is accessible from a state s i if the process,

starting in state s i , has a non-zero probability of reaching state s j .

This is equivalent to the following property in the transition graph

G : there is an (oriented) path from s i to s j in G . The Markov chain

is said to be irreducible if all its states are accessible to one another.

Equivalently, G has a single strong connected component.

• A state s is periodic with period d if d is the smallest integer s.t.

P r (X k = s | X 0 = s) for all k that are not multiple of d . In case of

d = 1 , the state is said to be aperiodic .

• A state s is said to be transient if, the process starts in state s

and there is non-zero probability that it will never return to s .

A state s that is not transient, is said to be recurrent .

• Let s be a recurrent state and T s be the time when the process

return to s for the first time. If the expected value of T s , given

that the process starts in state s , is finite, then state s is said to

be positive recurrent .

Now, we introduce the definition of ergodic Markov chains. This

property is fundamental in the rest of this paper.

Definition 3. A state s is said to be ergodic if it is aperiodic and

positive recurrent. In other words, a state s is ergodic if it is recur-

rent, has a period of 1 and it has finite mean recurrence time. If all

states in an irreducible Markov chain are ergodic, then the chain is

said to be ergodic .

Definition 4. A probability distribution π ∗ = (π ∗
s) s ∈ S satisfying

π ∗P = π ∗, i.e. , π ∗
s j

=

∑

s i ∈ S π
∗
s i

p i, j for all s j ∈ S , is called a stationary

distribution for the Markov chain (X t) t ≥ 0 .

Then, we have the following important theorem [21] :

Download	English	Version:

https://daneshyari.com/en/article/9952279

Download	Persian	Version:

https://daneshyari.com/article/9952279

Daneshyari.com

https://daneshyari.com/en/article/9952279
https://daneshyari.com/article/9952279
https://daneshyari.com/

