Accepted Manuscript

Novel Light Weight Compressed Data Aggregation using sparse measurements for IoT networks

M. Amarlingam, Pradeep Kumar Mishra, P. Rajalakshmi, Sumohana S. Channappayya, C.S. Sastry

PII: \$1084-8045(18)30261-3

DOI: 10.1016/j.jnca.2018.08.004

Reference: YJNCA 2188

To appear in: Journal of Network and Computer Applications

Received Date: 31 March 2018

Revised Date: 18 July 2018

Accepted Date: 14 August 2018

Please cite this article as: Amarlingam, M., Mishra, P.K., Rajalakshmi, P., Channappayya, S.S., Sastry, C.S., Novel Light Weight Compressed Data Aggregation using sparse measurements for IoT networks, *Journal of Network and Computer Applications* (2018), doi: 10.1016/j.jnca.2018.08.004.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Novel Light Weight Compressed Data Aggregation Using Sparse Measurements for IoT Networks

Amarlingam M, Pradeep Kumar Mishra, P Rajalakshmi, Sumohana S. Channappayya, and C. S. Sastry[†]

Department of Electrical Engineering

† Department of Mathematics

Indian Institute of Technology Hyderabad, Kandi, Sanagareddy-502285

Abstract

Optimal data aggregation aimed at maximizing IoT network lifetime by minimizing constrained on-board resource utilization continues to be a challenging task. The existing data aggregation methods have proven that compressed sensing is promising for data aggregation. However, they compromise either on energy efficiency or recovery fidelity and require complex on-node computations. In this paper, we propose a novel Light Weight Compressed Data Aggregation (LWCDA) algorithm that randomly divides the entire network into nonoverlapping clusters for data aggregation. The random non-overlapping clustering offers two important advantages: 1) energy efficiency, as each node has to send its measurement only to its cluster head, 2) highly sparse measurement matrix, which leads to a practically implementable framework with low complexity. We analyze the properties of our measurement matrix using restricted isometry property, the associated coherence and phase transition. Through extensive simulations on practical data, we show that the measurement matrix can reconstruct data with high fidelity. Further, we demonstrate that the LWCDA algorithm reduces transmission cost significantly against baseline approaches,

^{*}Amarlingam M

Email address: ee13p1003@iith.ac.in (Indian Institute of Technology Hyderabad, Kandi, Sanagareddy-502285)

Download English Version:

https://daneshyari.com/en/article/9952286

Download Persian Version:

https://daneshyari.com/article/9952286

Daneshyari.com