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a b s t r a c t 

Background and Objective: Cloud computing plays a vital role in big data science with its scalable and 

cost-efficient architecture. Large-scale genome data storage and computations would benefit from using 

these latest cloud computing infrastructures, to save cost and speedup discoveries. However, due to the 

privacy and security concerns, data owners are often disinclined to put sensitive data in a public cloud 

environment without enforcing some protective measures. An ideal solution is to develop secure genome 

database that supports encrypted data deposition and query. 

Methods: Nevertheless, it is a challenging task to make such a system fast and scalable enough to handle 

real-world demands providing data security as well. In this paper, we propose a novel, secure mechanism 

to support secure count queries on an open source graph database (Neo4j) and evaluated the performance 

on a real-world dataset of around 735,317 Single Nucleotide Polymorphisms (SNPs). In particular, we pro- 

pose a new tree indexing method that offers constant time complexity (proportion to the tree depth), 

which was the bottleneck of existing approaches. 

Results: The proposed method significantly improves the runtime of query execution compared to the 

existing techniques. It takes less than one minute to execute an arbitrary count query on a dataset of 

212 GB, while the best-known algorithm takes around 7 min. 

Conclusions: The outlined framework and experimental results show the applicability of utilizing graph 

database for securely storing large-scale genome data in untrusted environment. Furthermore, the crypto- 

system and security assumptions underlined are much suitable for such use cases which be generalized 

in future work. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Over the past decade, different technical breakthroughs have 

made genome sequencing more affordable. The next generation se- 

quencing techniques made this growth somewhat exponential as 

we are starting to observing datasets in volume of petabytes [1] . 

This increasing availability of genome data of different individuals 

gives us an opportunity to zoom into the micro level and analyze 

the complex correlation or causation. However, this is deeply chal- 

lenging due to the size of the data, computational complexity, and 

inherent privacy issues. 

As mentioned earlier, the immense size of genome data comes 

at a price of higher storage space. An economical solution will be 

leveraging the cost-efficient commercial cloud computing services 

(i.e., Amazon EC2, Microsoft Azure, or Google Cloud Platform, etc.) 
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to host data and conduct required analysis on demand. For exam- 

ple, Amazon S3 and Azure Storage Services charge only $0.0208 

to store 50 terabytes on a monthly base [2,3] . More importantly, 

these cloud services also reduce the operational costs of running 

large scale experiments on such large-scale data. 

Surely the commercial cloud services can provide a cost- 

effective and efficient solution to the ongoing genome data storage 

and computation issues. However, the privacy of these records is 

another notable aspect as public (/unrestricted) access of genome 

data might lead to re-identification attacks [4] , surname recovery 

[5] , facial and voice traits reconstruction [6,7] . Thus, genome data 

are highly sensitive because they are irrevocable and have stig- 

matizing consequences to both the individuals and their family, 

particularly first-degree relatives [8] . There are some surveys that 

demonstrate and discuss these privacy and security issues [9,10] . 

Due to these concerns and reported vulnerability of the public 

cloud [11] , data custodians are not comfortable in depositing sen- 

sitive genome data in a third-party environment (untrusted) with- 

out enforcing necessary protection [12] . An ideal approach is to 

develop a secure genome database, i.e., encrypting the data and 
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providing a security layer on top of the operations interface for 

safeguarding the data analysis process. Assuming the cloud ser- 

vice provider is semi-honest (honest but curious [13] ), and we only 

want to protect the data from external malicious users, data custo- 

dians can run queries on the encrypted data without establishing 

a complete, trusted relationship. 

However, this computation on encrypted data induces a cost on 

performance as these security primitives are not efficient as their 

plaintext counterparts. Scalability is another challenge as large 

memory consumption imposed by these security protocols might 

hinder the practicability of a realistic system. Thus, in this paper, 

we look into the balance between privacy and efficiency of the 

computation of genome data. We consider the count query oper- 

ation which is the building block for various statistical analysis on 

genome data. A count query procedure to obtain the number of 

individuals satisfying a SQL-like query can be represented as: 

SELECT count (∗) FROM Sequences 
WHERE SNP1 = ‘ A ′ AND SNP2 = ‘ T ′ AND . . . 
AND Disease = Yes 

Single Nucleotide Polymorphism (SNP) refers to a variation of 

a single position on a DNA sequence (of a certain individual) such 

that more than 1% of the population does not carry the same value. 

Although not all SNPs correspond to disorders, some of them are 

known to be associated with some diseases. A count query be- 

tween SNPs and a specific condition is the first step to explore the 

correlations and serves as the building block for genome-wide as- 

sociation studies (GWAS). 

1.1. Contributions 

In this paper, we propose a framework that provides better 

scalability and handles security issues of large-scale computations 

on genome data outsourced (transferred/stored) to a third party, 

public cloud server. Furthermore, we utilized a homomorphic cryp- 

tographic combined with Garbled Circuit scheme to ensure the se- 

curity and tree structure to represent the arbitrary genome data 

for computational efficiency. The major contributions of the paper 

can be summarized below: 

• We propose a method utilizing graph-based database to store 

and allow computations on real-world genome data securely . 
• A novel indexing scheme is proposed on such database to make 

the secure query operations more efficient. 
• We test the proposed approach along with the corresponding 

indexing scheme on a large-scale genome dataset containing 

735,317 human SNPs ( ∼ 200 GB data). 
• Experimental results show that it takes less than a minute for 

a query compared to best-known attempts where it required 

around 7 min [14,15] . 

The rest of the paper are organized as follows. Necessary back- 

grounds are discussed in Section 2 . We discuss the proposed meth- 

ods in Section 3 and show the results in Section 4 . In Section 6 we 

discuss some of the related work. Finally, we conclude and discuss 

some future works in Section 7 . 

2. Preliminaries 

In this section, we introduce some of the concepts (related to 

cryptography and genome data) required in understanding the pro- 

posed method. 

2.1. Data representation 

In this paper, we consider the Single Nucleotide Polymorphism 

(SNP) of human DNA and its association with specific disease. For 

Table 1 

Considered genomic data containing multiple patients and corre- 

sponding SNPs. 

Genomic sequence Phenotype 

Patient SNP 1 SNP 2 SNP 3 . . . SNP 5 Disease 

1 A T G C Yes 

2 T C C G No 

3 A T C C No 

4 A C C C Yes 

example, a mutation in BRCA1/2 genes has been reported to be as- 

sociated with breast cancer. A variant in BRCA1 is rs1799950 is one 

of 25 SNPs to express an increased risk for breast cancer [16] . We 

considered such a SNP dataset with has a specific disease associa- 

tion. The data is represented in Table 1 . 

2.2. Graph database 

Graph database uses different interconnected graph composi- 

tions to represent the data. In contrast to relational (traditional) 

database, graph database considers data points as the nodes and 

the relation between them as edges. This approach has proved 

much useful [17,18] in different literature and use cases as most of 

the relational data can be represented as a hierarchical data where 

one record is closely related to another. Graph database consists of 

nodes and edges where the nodes are interconnected with edges. 

Furthermore, there might be directional edges defining the connec- 

tivity of the nodes, though for simplicity we will only consider the 

non-directional edges throughout the rest of the paper. Regardless 

of the directions, the edges usually represent the relation between 

the nodes. In Fig. 1 we depict the difference between a relational 

and graph database. 

Formally, in a graph database (compared to relational tables), 

there are relationships which connect the entities . These entities 

can have specific properties. The relationships commonly described 

by verbs, for example, a patient ‘get’ certain conditions or a patient 

‘has’ many SNPs. A relationship also has properties, for instance, 

the property ‘has’ describes the detail data of SNP. 

2.3. Homomorphic encryption 

Homomorphic encryption (HE) is an encryption scheme which 

allows computations under encryption. For example, consider two 

numeric values 2, 3 and the resulting homomorphic encryption are 

two random numbers E (2) and E (3). The result of E(2) + E(3) will 

be the same as E (5). 

In this work, we utilized Paillier encryption [19] which has this 

additive property. However, there are other HE schemes with ad- 

ditive and/or multiplicative functionality. Regardless, we only need 

the additive property for our method and opted for this simple HE 

scheme. 

2.4. Garbled Circuit 

In 1986, Yao proposed Garbled Circuit (GC) which establishes a 

two-party protocol which allows the secure execution of an arbi- 

trary Boolean function f( x , y ) against semi-honest adversaries [20] . 

Here, x and y are two inputs from two individual parties, and 

they are kept secret from each other while the output of f ( x, y ) is 

disclosed. For example, in the millionaire problem, Alice and Bob 

want to know who has more money. They engage in a GC protocol 

where x and y are their net worth, respectively. The output will 

be a Boolean value representing f (x, y ) = x > y . If the value is one 

then x > y (denotes that Alice is richer) and vice versa. 
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