
Computer Methods and Programs in Biomedicine 165 (2018) 129–137

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine

journal homepage: www.elsevier.com/locate/cmpb

Secure large-scale genome data storage and query

Luyao Chen

a , 1 , Md Momin Aziz

b , 1 , ∗, Noman Mohammed

b , Xiaoqian Jiang

c

a Heinz College, Carnegie Mellon University, United States
b Computer Science, University of Manitoba, Canada
c School of Biomedical Informatics, University of Texas Health Science Center at Houston, United States

a r t i c l e i n f o

Article history:

Received 5 March 2018

Revised 26 July 2018

Accepted 8 August 2018

Keywords:

Secure genome data storage

Graph database

Secure computation on genome data

Homomorphic encryption

Genome data storage Neo4j

a b s t r a c t

Background and Objective: Cloud computing plays a vital role in big data science with its scalable and

cost-efficient architecture. Large-scale genome data storage and computations would benefit from using

these latest cloud computing infrastructures, to save cost and speedup discoveries. However, due to the

privacy and security concerns, data owners are often disinclined to put sensitive data in a public cloud

environment without enforcing some protective measures. An ideal solution is to develop secure genome

database that supports encrypted data deposition and query.

Methods: Nevertheless, it is a challenging task to make such a system fast and scalable enough to handle

real-world demands providing data security as well. In this paper, we propose a novel, secure mechanism

to support secure count queries on an open source graph database (Neo4j) and evaluated the performance

on a real-world dataset of around 735,317 Single Nucleotide Polymorphisms (SNPs). In particular, we pro-

pose a new tree indexing method that offers constant time complexity (proportion to the tree depth),

which was the bottleneck of existing approaches.

Results: The proposed method significantly improves the runtime of query execution compared to the

existing techniques. It takes less than one minute to execute an arbitrary count query on a dataset of

212 GB, while the best-known algorithm takes around 7 min.

Conclusions: The outlined framework and experimental results show the applicability of utilizing graph

database for securely storing large-scale genome data in untrusted environment. Furthermore, the crypto-

system and security assumptions underlined are much suitable for such use cases which be generalized

in future work.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, different technical breakthroughs have

made genome sequencing more affordable. The next generation se-

quencing techniques made this growth somewhat exponential as

we are starting to observing datasets in volume of petabytes [1] .

This increasing availability of genome data of different individuals

gives us an opportunity to zoom into the micro level and analyze

the complex correlation or causation. However, this is deeply chal-

lenging due to the size of the data, computational complexity, and

inherent privacy issues.

As mentioned earlier, the immense size of genome data comes

at a price of higher storage space. An economical solution will be

leveraging the cost-efficient commercial cloud computing services

(i.e., Amazon EC2, Microsoft Azure, or Google Cloud Platform, etc.)

∗ Corresponding author.

E-mail address: azizmma@cs.umanitoba.ca (M.M. Aziz).
1 Work done during an internship at Department of Biomedical Informatics, Uni-

versity of California San Diego.

to host data and conduct required analysis on demand. For exam-

ple, Amazon S3 and Azure Storage Services charge only $0.0208

to store 50 terabytes on a monthly base [2,3] . More importantly,

these cloud services also reduce the operational costs of running

large scale experiments on such large-scale data.

Surely the commercial cloud services can provide a cost-

effective and efficient solution to the ongoing genome data storage

and computation issues. However, the privacy of these records is

another notable aspect as public (/unrestricted) access of genome

data might lead to re-identification attacks [4] , surname recovery

[5] , facial and voice traits reconstruction [6,7] . Thus, genome data

are highly sensitive because they are irrevocable and have stig-

matizing consequences to both the individuals and their family,

particularly first-degree relatives [8] . There are some surveys that

demonstrate and discuss these privacy and security issues [9,10] .

Due to these concerns and reported vulnerability of the public

cloud [11] , data custodians are not comfortable in depositing sen-

sitive genome data in a third-party environment (untrusted) with-

out enforcing necessary protection [12] . An ideal approach is to

develop a secure genome database, i.e., encrypting the data and

https://doi.org/10.1016/j.cmpb.2018.08.007

0169-2607/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cmpb.2018.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2018.08.007&domain=pdf
mailto:azizmma@cs.umanitoba.ca
https://doi.org/10.1016/j.cmpb.2018.08.007

130 L. Chen et al. / Computer Methods and Programs in Biomedicine 165 (2018) 129–137

providing a security layer on top of the operations interface for

safeguarding the data analysis process. Assuming the cloud ser-

vice provider is semi-honest (honest but curious [13]), and we only

want to protect the data from external malicious users, data custo-

dians can run queries on the encrypted data without establishing

a complete, trusted relationship.

However, this computation on encrypted data induces a cost on

performance as these security primitives are not efficient as their

plaintext counterparts. Scalability is another challenge as large

memory consumption imposed by these security protocols might

hinder the practicability of a realistic system. Thus, in this paper,

we look into the balance between privacy and efficiency of the

computation of genome data. We consider the count query oper-

ation which is the building block for various statistical analysis on

genome data. A count query procedure to obtain the number of

individuals satisfying a SQL-like query can be represented as:

SELECT count (∗) FROM Sequences
WHERE SNP1 = ‘ A ′ AND SNP2 = ‘ T ′ AND . . .
AND Disease = Yes

Single Nucleotide Polymorphism (SNP) refers to a variation of

a single position on a DNA sequence (of a certain individual) such

that more than 1% of the population does not carry the same value.

Although not all SNPs correspond to disorders, some of them are

known to be associated with some diseases. A count query be-

tween SNPs and a specific condition is the first step to explore the

correlations and serves as the building block for genome-wide as-

sociation studies (GWAS).

1.1. Contributions

In this paper, we propose a framework that provides better

scalability and handles security issues of large-scale computations

on genome data outsourced (transferred/stored) to a third party,

public cloud server. Furthermore, we utilized a homomorphic cryp-

tographic combined with Garbled Circuit scheme to ensure the se-

curity and tree structure to represent the arbitrary genome data

for computational efficiency. The major contributions of the paper

can be summarized below:

• We propose a method utilizing graph-based database to store

and allow computations on real-world genome data securely .
• A novel indexing scheme is proposed on such database to make

the secure query operations more efficient.
• We test the proposed approach along with the corresponding

indexing scheme on a large-scale genome dataset containing

735,317 human SNPs (∼ 200 GB data).
• Experimental results show that it takes less than a minute for

a query compared to best-known attempts where it required

around 7 min [14,15] .

The rest of the paper are organized as follows. Necessary back-

grounds are discussed in Section 2 . We discuss the proposed meth-

ods in Section 3 and show the results in Section 4 . In Section 6 we

discuss some of the related work. Finally, we conclude and discuss

some future works in Section 7 .

2. Preliminaries

In this section, we introduce some of the concepts (related to

cryptography and genome data) required in understanding the pro-

posed method.

2.1. Data representation

In this paper, we consider the Single Nucleotide Polymorphism

(SNP) of human DNA and its association with specific disease. For

Table 1

Considered genomic data containing multiple patients and corre-

sponding SNPs.

Genomic sequence Phenotype

Patient SNP 1 SNP 2 SNP 3 . . . SNP 5 Disease

1 A T G C Yes

2 T C C G No

3 A T C C No

4 A C C C Yes

example, a mutation in BRCA1/2 genes has been reported to be as-

sociated with breast cancer. A variant in BRCA1 is rs1799950 is one

of 25 SNPs to express an increased risk for breast cancer [16] . We

considered such a SNP dataset with has a specific disease associa-

tion. The data is represented in Table 1 .

2.2. Graph database

Graph database uses different interconnected graph composi-

tions to represent the data. In contrast to relational (traditional)

database, graph database considers data points as the nodes and

the relation between them as edges. This approach has proved

much useful [17,18] in different literature and use cases as most of

the relational data can be represented as a hierarchical data where

one record is closely related to another. Graph database consists of

nodes and edges where the nodes are interconnected with edges.

Furthermore, there might be directional edges defining the connec-

tivity of the nodes, though for simplicity we will only consider the

non-directional edges throughout the rest of the paper. Regardless

of the directions, the edges usually represent the relation between

the nodes. In Fig. 1 we depict the difference between a relational

and graph database.

Formally, in a graph database (compared to relational tables),

there are relationships which connect the entities . These entities

can have specific properties. The relationships commonly described

by verbs, for example, a patient ‘get’ certain conditions or a patient

‘has’ many SNPs. A relationship also has properties, for instance,

the property ‘has’ describes the detail data of SNP.

2.3. Homomorphic encryption

Homomorphic encryption (HE) is an encryption scheme which

allows computations under encryption. For example, consider two

numeric values 2, 3 and the resulting homomorphic encryption are

two random numbers E (2) and E (3). The result of E(2) + E(3) will

be the same as E (5).

In this work, we utilized Paillier encryption [19] which has this

additive property. However, there are other HE schemes with ad-

ditive and/or multiplicative functionality. Regardless, we only need

the additive property for our method and opted for this simple HE

scheme.

2.4. Garbled Circuit

In 1986, Yao proposed Garbled Circuit (GC) which establishes a

two-party protocol which allows the secure execution of an arbi-

trary Boolean function f(x , y) against semi-honest adversaries [20] .

Here, x and y are two inputs from two individual parties, and

they are kept secret from each other while the output of f (x, y) is

disclosed. For example, in the millionaire problem, Alice and Bob

want to know who has more money. They engage in a GC protocol

where x and y are their net worth, respectively. The output will

be a Boolean value representing f (x, y) = x > y . If the value is one

then x > y (denotes that Alice is richer) and vice versa.

Download English Version:

https://daneshyari.com/en/article/9952305

Download Persian Version:

https://daneshyari.com/article/9952305

Daneshyari.com

https://daneshyari.com/en/article/9952305
https://daneshyari.com/article/9952305
https://daneshyari.com

