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A B S T R A C T

The subdivision of samples into stationary sets is one of the first decisions in a resource modeling workflow
where geologically and statistically related samples are grouped for further geostatistical modeling.
Unsupervised learning algorithms (clustering) with modifications to consider spatial correlation have several
benefits in the decision of stationarity, they are: automatic and repeatable; assess uncertainty; and provide a
framework for checking existing groupings. However, subjective parameterization remains a critical limitation
for the application of spatial clustering in geostatistical workflows. In this work, two main extensions to the
current state of research are proposed: 1) a combined spatial-multivariate metric that describes cluster quality in
both multivariate and Cartesian space by measuring multivariate compactness and spatial contiguity; and 2) a
novel random-path spatial-multivariate ensemble clustering algorithm to reduce the reliance on subjective
clustering parameterization. The metrics developed in this work quantify clustering quality based multivariate
and spatial properties. Moreover, the proposed clustering algorithm allows the user to control the spatial con-
tiguity and multivariate compactness of the final clusters by modifying a single parameter. The clustering al-
gorithm is introduced and demonstrated on a synthetic test dataset, then further application to more complex
datasets are explored to demonstrate the clustering properties and simplicity of tuning the algorithm to prefer
spatially contiguous clusters or multivariate compactness. The proposed algorithm outperforms other clustering
algorithms for the datasets tested based on the metrics developed.

1. Introduction

Rock samples collected to characterize natural resources provide an
incomplete view of the subsurface since the properties measured from the
samples vary spatially and at all scales. A goal of geostatistics is to esti-
mate the distribution of uncertainty of a property of interest (e.g., grade,
porosity, value, etc) at an unsampled location given the nearby data. Two
important assumptions are often made: 1) the nearby data are related to
one another and represent relevant geological processes; and 2) the un-
sampled locations are also part of these geological processes.

Geostatistical modeling makes various assumptions of stationarity.
In a geostatistical context, a stationary RF implies invariance of the first
and second order statistics (μ σ Covu u u( ), ( ), ( )) for all ∈u A. In the
strict sense, geological domains are rarely stationary; a trend model or
local variograms are required to satisfy stationarity in the presence of

elemental zoning or complex geological structures (Qu and Deutsch,
2017; Boisvert and Deutsch, 2011). However, many non-stationary
features can be accounted for by considering sub-setting the geological
dataset so that each sub-population is stationary. Typically sub-sets are
generated by considering the geological attributes recorded in core
logs. Two typical scenarios include: 1) either there are too many dis-
tinct geological units defined in the logs and decisions about merging
units must be made; or 2) the available logging information does not
inform clearly defined stationary populations. In the first case the
geostatistician must adopt a merging workflow that simultaneously
considers the spatial, multivariate and geological properties to define a
smaller number of modeling categories (Rossi and Deutsch, 2014). In
the second case, decisions about how to subset the population into
distinct spatial-multivariate sets must be made. In the univariate case,
grade domains are often considered where subsets of the dataset are
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generated based on project specific cutoffs (Leuangthong and
Srivastava, 2012) and each subset is modeled independently. Typically
the grade variables are lognormally distributed and the heteroscedastic
nature of the variable can be used to justify this style of subdivision
(Manchuk et al., 2009).

Cluster analysis is a popular technique used to learn the dominant
groups present in a given dataset and includes algorithms such as K-
means or hierarchical clustering. Consider a geostatistical dataset
consisting of surface samples, drill cores or wells. At each location, M
continuous and/or discreet properties are recorded, such as grain size,
rock type, alteration type and intensity, geophysical properties, or
measurements of the values of interest with whole rock lithogeo-
chemical analyses. Clustering algorithms partition the M dimensional
attribute space, i.e. hyper-space, so that samples within a partition are
highly related and different from samples in other partitions.
Traditional clustering methods are poorly suited to partitioning geos-
tatistical domains because they do not consider the spatially correlated
nature of the samples.

Methods to consider the spatial correlation between samples in
clustering algorithms have been developed (Oliver and Webster, 1989;
Ambroise and Govaert, 1998; Scrucca, 2005; Fouedjio,; Chautru et al.,
2016; Romary et al., 2015). Although several methods exist to treat the
spatial correlation of the samples, all algorithms utilize a single para-
meterization that is subjectively chosen by the practitioner to generate
classes that are subjectively assessed as reasonable. All truly un-
supervised classification algorithms require some domain knowledge to
justify the results and ensure the resulting classes are reasonable (Strehl
and Ghosh, 2002). Romary et al. (2015) note that expert domain
knowledge should guide the parameter inference of their classification
algorithm so that the resulting classes are reasonable and better suited
to the geostatistical workflows that follow. However the results of two
differently parameterized clustering runs may be significantly different
and, to our knowledge, objective measures of clustering configurations
for geostatistical applications have not been developed.

Two main contributions of this work are (1) assess the results of
spatial clustering and (2) reduce reliance on subjective parameteriza-
tions for spatial clustering of geostatistical domains. First, a novel
random-path spatial clustering algorithm with dual-space search is
developed. The algorithm implements consensus clustering where
many individual clusterings of the data are combined to generate the
most likely clustering (Strehl and Ghosh, 2002; Topchy et al., 2005). In
this work, random-path and iterative dual-space merging generate in-
dividual clusterings, and the results are processed using an ensemble
post-processing workflow.

Secondly, validation of spatial clustering techniques is an out-
standing issue. Typically a clustering result is validated either with
internal or external measures: e.g., measuring the compactness of the
configuration or the error in predicting a set of known classes (Halkidi
et al., 2001; Strehl and Ghosh, 2002; Tibshirani and Walther, 2005). In
a geostatistical context the true labels are not known. Instead, a set of
metrics that quantify the desirable properties of a set of spatial-multi-
variate classes for the geostatistical workflow are developed. These
metrics permit objective comparisons between different spatial-multi-
variate clusterings of the same dataset.

The rest of the paper is organized as follows: Section 2 reviews
existing methods for spatial clustering. Section 3 discusses methods for
validation and develops novel spatial-multivariate metrics. Section 4
outlines the details of the proposed algorithm for finding dominant
spatial classes in geostatistical datasets, and demonstrates the algorithm
and parameter choices on a simple synthetic dataset. Finally, the results
of considering this style of spatial clustering are demonstrated on a 2D
and 3D dataset in Section 5.

2. Background

Stationarity is rarely a property of geological domains, rather it

entails a series of decisions made by the geostatistician to subdivide
samples into groups and/or choose how to model the non-stationary
features present in the modeling domains. Numerous techniques are
available to model geostatistical realizations of a non-stationary RF,
such as modeling with a trend or locally varying anisotropy (Boisvert
and Deutsch, 2011; Fouedjio, 2016b; Rossi and Deutsch, 2014; Qu and
Deutsch, 2017). Better decisions of stationarity lead to better resource
estimates since the statistical homogeneity of the domains is improved
and the parameters inferred for modeling in each domain are more
representative of each sub-population (Rossi and Deutsch, 2014).

2.1. Clustering and spatial clustering

Clustering algorithms partition a set of N samples of M variables
into mutually exclusive groups based on the similarity of samples.
Individual clustering algorithms typically differ in the form of the
clusters found, the types of (dis)similarity metrics used, and the discreet
or fuzzy partitioning of the samples (Ester et al., 1996; Jain, 2010;
Sander and Ester, 1998). Clustering algorithms are well suited to par-
titioning M dimensional attribute space, however applications to
geostatistical datasets are limited because the spatial correlation and
geological properties of the samples are not considered (Rossi and
Deutsch, 2014).

Spatial clustering describes methods developed to address spatial
correlation between samples taken at a set of points in Cartesian space
(Oliver and Webster, 1989; Ambroise and Govaert, 1998; Scrucca,
2005). The goal is to generate classes that are spatially contiguous and
have distinct multivariate properties. Two general strategies have been
applied: 1) some form of neighborhood constraint to modify relatedness
of distant and uncorrelated samples (Oliver and Webster, 1989;
Ambroise and Govaert, 1998; Fouedjio,; Romary et al., 2015); or 2)
generating a secondary dataset calculated from the original data with
local autocorrelation statistics (Scrucca, 2005). Oliver and Webster
(1989) justified the variogram model as a method to increase the re-
latedness of nearby points in clustering. In their work the spatial
compactness of clusters was tuned by modifying the range and shape of
the variogram model. Fouedjio (Fouedjio,) extends the kernel-based
modifier to the multivariate case by incorporating the direct and cross-
variogram measures to modify the dissimilarity matrix. The meth-
odologies from Ambroise and Govaert (1998) and [Romary et al.
(2012), (Romary et al., 2015)] introduce spatial constraints to con-
ventional clustering to ensure only samples in related neighborhoods
are paired.

The other method for generating spatially connected multivariate
clusters uses local autocorrelation statistics (Scrucca, 2005; Ord and
Getis, 1995). The first step is to generate a new dataset by calculating
local autocorrelation measures for each variable given the nearby data
in the cartesian space [e.g., Morans, Getis local autocorrelation; 8]. The
new variable at each location captures the magnitude and sign of the
original value as well as the relatedness to nearby points. The new
dataset is then used in conventional clustering algorithms, such as K-
means, to determine the classes that have both spatial and multivariate
significance.

However, common to all available clustering and spatial clustering
algorithms is the issue of parameterization and validation; the number
of clusters, the method of integrating spatial correlation, how the re-
lated spatial neighborhood is determined, the maximum distance of
‘relatedness’, the form of the clusters, etc, must be chosen and justified
with expert knowledge or somehow compared against known classes in
the dataset. Although statistical techniques can be used to determine
values for some parameters [e.g., the number of clusters; (Tibshirani
and Walther, 2005), (Tibshirani et al., 2001)], others decisions are
more subjective (e.g., which method to integrate spatial information).
These are not problems with spatial clustering alone, instead these are
general issues for implementing clustering as the algorithms cannot be
applied in a truly unsupervised sense; some domain knowledge is
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