Author's Accepted Manuscript

High-flux CHA zeolite membranes for H₂ separations

Weiliang Mei, Yang Du, Tangyan Wu, Feng Gao, Bin Wang, Jingui Duan, Junjing Zhou, Rongfei Zhou

PII: S0376-7388(18)30704-X

https://doi.org/10.1016/j.memsci.2018.08.025 DOI:

Reference: MEMSCI16399

To appear in: Journal of Membrane Science

Received date: 14 March 2018 Revised date: 8 August 2018 Accepted date: 20 August 2018

Cite this article as: Weiliang Mei, Yang Du, Tangyan Wu, Feng Gao, Bin Wang, Jingui Duan, Junjing Zhou and Rongfei Zhou, High-flux CHA zeolite membranes for H_2 separations, Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2018.08.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

High-flux CHA zeolite membranes for H₂ separations

Weiliang Mei¹, Yang Du¹, Tangyan Wu¹, Feng Gao¹, Bin Wang¹, Jingui Duan¹, Junjing Zhou²*, Rongfei Zhou¹*

 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 210009, P. R. China

anuscille

; jjzhou@njtech.edu.cn (J.J. Zhou)

E-mail address: rf-zhou@njtech.edu.cn (R.F. Zhou)

* Corresponding author; Fax: +86-25-8317-2261; Phone: +86-25-6880-3018.

Abstract:

Two types of CHA zeolite membranes (SAPO-34 and SSZ-13) were used for the separations of CO_2/H_2 and H_2/CH_4 binary mixtures at pressures up to 2.8 MPa. Separation performances of both membranes were improved after synthesis modifications. The SAPO-34 membranes had higher permeances than the SSZ-13 membranes because less SAPO-34 crystals were grown into the support pores. The best SAPO-34 membrane showed CO_2/H_2 separation selectivity of 17.6 and CO_2 permeance of 40.3×10^{-7} mol/(m² s Pa) (CO₂ permeability of 72220 barrers); this

Download English Version:

https://daneshyari.com/en/article/9952623

Download Persian Version:

https://daneshyari.com/article/9952623

<u>Daneshyari.com</u>