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a b s t r a c t 

The inverse Langevin function is a fundamental part of the statistical chain models used to describe the behavior 

of polymeric-like materials, appearing also in other fields such as magnetism, molecular dynamics and even 

biomechanics. In the last four years, several approximants of the inverse Langevin function have been proposed. In 

most of them, optimization techniques are used to reduce the relative error of previously published approximants 

to reach orders of magnitude of 𝑂 

(
10 −3 % − 10 −2 % 

)
. In this paper a new simple and efficient numerical approach 

to calculate the inverse Langevin function is proposed. Its main feature is the reduction of the relative errors in all 

the domain 𝑥 = [0 , 1) to near machine precision, maintaining function evaluation CPU times similar to those of the 

most efficient approximants. The method consists in the discretization of the Langevin function, the calculation 

of the inverse of these discretization points and their interpolation by cubic splines. In order to reproduce the 

asymptotic behavior of the inverse Langevin function, a rational function is considered only in the asymptotic 

zone keeping  1 continuity with the cubic splines. We include customizable Matlab codes to create the spline 

coefficients, to evaluate the function, and to compare accuracy and efficiency with other published proposals. 

1. Introduction 

The inverse Langevin function is frequently used in fields like poly- 

mer science [1–3] , rubber hyperelasticity [4,5] and biomechanics [6] . 

In these contexts, a single molecular chain can be modeled as a freely- 

joined chain (FJC), which is composed of n linked rigid segments of 

equal length l , randomly coiled, so that 𝐿 = 𝑛𝑙 is the contour length of 

the chain. Its configuration is defined by the end-to-end distance or tie 

points distance, r , that is the length between the ends of the chain. When 

𝑟 = 0 , both points are coincident and the entropy is maximum, whereas 

if the chain is cross-linked, the entropy decreases since the number of 

possible configurations that the chain can take also decreases [7,8] . The 

entropy of a molecule network, S , composed by N chains per reference 

volume, can be defined in terms of the available configurations, which 

are mathematically given by a probability distribution function (PDF) 

p ( r ) 

𝑆 = 𝑐 + 𝑁𝑘 𝐵 ln ( 𝑝 ( 𝑟 ) ) (1) 

where c is a constant and k B is the Boltzmann constant. 

When a single chain, 𝑁 = 1 , develops finite strain, Gaussian PDFs are 

no longer valid since they do not account for the limit of the chain ex- 

tensibility when 𝑟 → 𝐿 = 𝑛𝑙. Thus, a PDF based on the inverse Langevin 

function is used so that a relationship between the force applied in a 
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single chain and its extensibility can be obtained through 

𝑓 = − 𝑇 
𝜕𝑆 

𝜕𝑟 
= 

𝑘 𝐵 

𝑙 
𝑇  

−1 
(
𝑟 

𝑛𝑙 

)
(2) 

where T is the absolute temperature and  

−1 is the inverse Langevin 

function [8] . The Langevin function is defined as 

𝑥 =  ( 𝑦 ) = coth ( 𝑦 ) − 

1 
𝑦 

(3) 

There is no explicit form of its inverse,  

−1 ( 𝑥 ) , and several approx- 

imants have been proposed. The first one was proposed by Kuhn and 

Grün [9] and consists in a Taylor expansion series around 𝑥 = 0 . Al- 

though, as expected, approximants based on Taylor expansion series 

show a good accuracy around the fixed point 𝑥 = 0 , they have diver- 

gence problems in the vicinity of 𝑥 = 1 , when the chain starts to be fully 

stretched, so 𝑟 → 𝐿 = 𝑛𝑙. Recent studies have proven that with 115 se- 

ries terms, a good accuracy is found in the interval [0, 0.95] and that 

above 500 terms the convergence radius remains unchanged [10,11] . It 

is obvious that the computational evaluation of such number of terms is 

exceedingly expensive. 

To account for the singularity of the inverse Lanvegin function at 

𝑥 = 1 , several Padé approximants have been proposed. These approx- 

imants are rational functions denoted by [ m / n ], where m and n are 

the degree of the polynomials corresponding to the numerator and the 
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Table 1 

Maximum relative error of the main approximants, their complexity as 

suitable for analytical treatment (polynomials with integer-valued pow- 

ers) and comparative mean CPU time in their evaluation. These approxi- 

mants (except Cohen’s, which have the largest error) are included in the 

Matlab script given in the Appendix. 

Approximant 𝜀 r (%) Complexity CPU time ( 10 −8 s) 

Cohen [13] 4.94 5 5.77 

Kröger [2] 2 . 75 ⋅ 10 −1 9 8.25 

Petrosyan [19] 1 . 79 ⋅ 10 −1 - 13.3 

Nguesson et al. [17] 4 . 65 ⋅ 10 −2 - 42.17 

Jedynak [11] 7 . 69 ⋅ 10 −2 11 9.94 

Marchi and Arruda [18] 4 . 37 ⋅ 10 −3 - 43.63 

denominator, respectively. They account for the singularity at 𝑥 = 1 in 
terms of 1∕ 

(
1 − 𝑥 𝑖 

)𝑗 
, being i and j natural numbers excluding the zero. 

Examples of this kind of approximant are the proposals of Warner [12] , 

Cohen’s rounded Padé proposal [13] and Puso [14] . These approximants 

are usually known as single-point Padé approximants, since the polyno- 

mial coefficients are determined with the information of the function 

 

−1 ( 𝑦 ) and its derivatives that is given by Taylor expansion series around 

𝑥 = 0 . When these coefficients are calculated by evaluating the function 

in some points within the domain [0, 1) the approximants are called 

multi-point Padé approximants. Examples of multi-point Padé approxi- 

mants have been proposed by Jedynak [15] and Darabi and Itskov [16] . 

Kröger [2] improved some of the aforementioned single- and multi-point 

Padé approximants considering the exact asymptotic, symmetry and in- 

tegral behavior of the inverse Langevin function. 

In the last years, a new trend of improving some of the existing ap- 

proximants by optimization methods has emerged. Such is the case of 

the error-corrected approximants developed by Nguessong et al. [17] . 

They improved the accuracy of some of the above mentioned multi- 

point Padé approximants calculating the error functions corresponding 

to the approximant and subtracting both. To do so, Neguessong et al. 

[17] developed an optimization of the error function parameters by 

a least squares minimization. Following this idea, Marchi and Arruda 

[18] proposed not only the optimization of these parameters but also 

the polynomial coefficients of the approximant to minimize its relative 

error. Recently, Petrosyan [19] deduced a function accounting for the 

asymptotic behavior of the inverse Langevin function and minimized its 

absolute error with a sine and a quadratic function. 

Also recently, Jedynak [11] improved the approximants given by 

Kröger [2] and proposed a new one applying the minimax approxima- 

tion theory. The approximation theory is a method to determine the 

degree of the polynomial or rational approximation that minimizes the 

error of a certain function. Jedynak minimized the relative error of the 

inverse Langevin function increasing the complexity of the Kröger inter- 

polant to 11, that is to say with a rational function of [9/2] degree. The 

polynomial coefficients were determined solving a system of nonlinear 

equations by means of Remez’s algorithm. 

An approximant not based on Taylor series or Padé functions was 

proposed by Bergström. It is a piecewise function resulting from dividing 

the domain in two subdomains to account for the asymptotic behavior of 

 

−1 , Ref. [20] . Despite having good accuracy, this approximant has some 

drawbacks that make its application to physical problems difficult, see 

Refs. [15] and [18] . 

The fact that most of the above-mentioned papers have been pub- 

lished in the last four years, from 2014 to 2017, shows that the calcu- 

lation of the inverse Langevin function is of much current interest and 

that a satisfactory, computationally efficient and accurate solution has 

not been reached yet [2,11,15,16,18,19] . These works have been mainly 

focussed on improving the accuracy of previous researches. To summa- 

rize and to compare the accuracy of the main approximants proposed, 

their maximum relative error, 𝜀 r , is shown in Table 1 . According to these 

data, a lot of effort has been invested to reduce the maximum relative er- 

ror of the rounded Cohen approximant in only one order of magnitude, 

𝑂 

(
10 −1 % 

)
in the case of Kröger or Petrosyan. The order of magnitude 

of the error has not improved substantially with the error minimizing 

techniques. With this optimization methods the order of magnitude of 

the relative error is 𝑂 

(
10 −2 − 10 −3 % 

)
[11,17,18] . 

The accuracy of the inverse Langevin function is not a minor issue 

since it has a relevant influence in the results obtained in computational 

simulations. Indeed, the inverse Langevin function is used in many mod- 

els implemented in finite element codes [1,21–24] , including commer- 

cial finite element programs such as ABAQUS or ADINA. During simu- 

lations, the inverse Langevin function is typically evaluated millions of 

times, so iterative methods are avoided and explicit approximants are 

preferred. Recently, Ammar has shown the important influence of the 

approximants accuracy in the results obtained in simple finite element 

simulations in the framework of the dilute polymer kinetic theory [1] . 

When complex calculations are performed, the approximant accuracy 

can be a critical factor to obtain reliable results. Therefore, an approx- 

imation of the inverse Langevin function with a simple and computa- 

tionally efficient implementation in a finite element code, and with a 

suitable accuracy, is needed to ensure adequate efficient computational 

predictions. 

In this paper we present a simple computationally-oriented tech- 

nique to calculate the inverse Langevin function that reduces the maxi- 

mum relative error close to the one that a computer can obtain. In this 

proposal, the inverse Langevin function is obtained by means of a cubic 

spline representation of the function. However, to reproduce the asymp- 

tote at 𝑥 = 1 , the discretization close to the asymptotic zone is replaced 

by a [1/2] rational function that fulfills  1 continuity conditions with 

cubic splines, so constitutive tangents keep continuity. Thus, the approx- 

imation to the inverse Langevin function consists in a series of piecewise 

polynomials and a rational function in the vicinity of the asymptote. The 

derivatives and integrals are also immediate (explicit) and continuous. 

We note that although this method requires the calculation of the spline 

coefficients, these coefficients are obtained just once. In fact, the coef- 

ficients can be previously stored and embedded in the code at program 

compilation time. The price to pay for high accuracy and efficiency is an 

increased storage. However, the storage needs are negligible for current 

digital devices. For example, if the Langevin function discretization is 

performed in 10,001 points (a number of points that gives high accuracy 

as shown below), 10,000 cubic splines must be calculated. Considering 

that every polynomial has four coefficients, 40,000 coefficients have to 

be stored in the computer memory. Taking into account that a double 

precision number is stored in 8 bytes, 320kB are necessary to store all 

the spline coefficients, which is at least four orders of magnitude less 

than the typical RAM memory (e.g. 6GB) of an economic laptop com- 

puter or a graphic card (GPU), and also several orders of magnitude 

less than the typical memory needed to solve an industry problem. Near 

machine precision is obtained with 100,000 spline pieces which takes 

just about 3MB of memory. Remarkably, function evaluation times are 

almost independent of the desired, and obtained, accuracy. 

Matlab codes are given in the appendices and commented in the text 

below. Although the method is explained using Matlab, its implementa- 

tion in any computer language is straightforward. 

2. Determination of the inverse Langevin function by cubic 

splines interpolation 

2.1. Splines 

Piecewise cubic splines are cubic interpolating polynomials which 

have minimum curvature and preserve continuity of derivatives be- 

tween contiguous segments up to second order. Some background on 

splines may be found, for example in Reference [25] . Some applications 

in the context of hyperelasticity in polymers and biological tissues may 

be found, for example, in [26–30] . 
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