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ABSTRACT

The inverse Langevin function is a fundamental part of the statistical chain models used to describe the behavior
of polymeric-like materials, appearing also in other fields such as magnetism, molecular dynamics and even
biomechanics. In the last four years, several approximants of the inverse Langevin function have been proposed. In
most of them, optimization techniques are used to reduce the relative error of previously published approximants
to reach orders of magnitude of 0(10‘3% —1072%). In this paper a new simple and efficient numerical approach
to calculate the inverse Langevin function is proposed. Its main feature is the reduction of the relative errors in all
the domain x = [0, 1) to near machine precision, maintaining function evaluation CPU times similar to those of the
most efficient approximants. The method consists in the discretization of the Langevin function, the calculation
of the inverse of these discretization points and their interpolation by cubic splines. In order to reproduce the
asymptotic behavior of the inverse Langevin function, a rational function is considered only in the asymptotic
zone keeping C! continuity with the cubic splines. We include customizable Matlab codes to create the spline

coefficients, to evaluate the function, and to compare accuracy and efficiency with other published proposals.

1. Introduction

The inverse Langevin function is frequently used in fields like poly-
mer science [1-3], rubber hyperelasticity [4,5] and biomechanics [6].
In these contexts, a single molecular chain can be modeled as a freely-
joined chain (FJC), which is composed of n linked rigid segments of
equal length [, randomly coiled, so that L = nl is the contour length of
the chain. Its configuration is defined by the end-to-end distance or tie
points distance, r, that is the length between the ends of the chain. When
r = 0, both points are coincident and the entropy is maximum, whereas
if the chain is cross-linked, the entropy decreases since the number of
possible configurations that the chain can take also decreases [7,8]. The
entropy of a molecule network, S, composed by N chains per reference
volume, can be defined in terms of the available configurations, which
are mathematically given by a probability distribution function (PDF)
p()

S =c+ Nkgln(p(r) (1)

where c is a constant and kg is the Boltzmann constant.

When a single chain, N = 1, develops finite strain, Gaussian PDFs are
no longer valid since they do not account for the limit of the chain ex-
tensibility when r — L = nl. Thus, a PDF based on the inverse Langevin
function is used so that a relationship between the force applied in a
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single chain and its extensibility can be obtained through

oS kg _(r
=-T—=-2TCL (_) 2
4 or ! nl @
where T is the absolute temperature and £~! is the inverse Langevin

function [8]. The Langevin function is defined as
1
x = L(y) = coth (y) — 5 3

There is no explicit form of its inverse, £~!(x), and several approx-
imants have been proposed. The first one was proposed by Kuhn and
Griin [9] and consists in a Taylor expansion series around x = 0. Al-
though, as expected, approximants based on Taylor expansion series
show a good accuracy around the fixed point x = 0, they have diver-
gence problems in the vicinity of x = 1, when the chain starts to be fully
stretched, so r — L = nl. Recent studies have proven that with 115 se-
ries terms, a good accuracy is found in the interval [0, 0.95] and that
above 500 terms the convergence radius remains unchanged [10,11]. It
is obvious that the computational evaluation of such number of terms is
exceedingly expensive.

To account for the singularity of the inverse Lanvegin function at
x = 1, several Padé approximants have been proposed. These approx-
imants are rational functions denoted by [m/n], where m and n are
the degree of the polynomials corresponding to the numerator and the
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Table 1

Maximum relative error of the main approximants, their complexity as
suitable for analytical treatment (polynomials with integer-valued pow-
ers) and comparative mean CPU time in their evaluation. These approxi-
mants (except Cohen’s, which have the largest error) are included in the
Matlab script given in the Appendix.

Approximant &, (%) Complexity CPU time (1078 s)
Cohen [13] 4.94 5 5.77

Kroger [2] 2.75- 107! 9 8.25

Petrosyan [19] 1.79 - 107! 13.3

Nguesson et al. [17] 4.65-1072 - 42.17

Jedynak [11] 7.69 1072 11 9.94

Marchi and Arruda [18] 4.37-1073 43.63

denominator, respectively. They account for the singularity at x = 1 in
terms of 1/(1 - x")j , being i and j natural numbers excluding the zero.
Examples of this kind of approximant are the proposals of Warner [12],
Cohen’s rounded Padé proposal [13] and Puso [14]. These approximants
are usually known as single-point Padé approximants, since the polyno-
mial coefficients are determined with the information of the function
£7(y) and its derivatives that is given by Taylor expansion series around
x = 0. When these coefficients are calculated by evaluating the function
in some points within the domain [0, 1) the approximants are called
multi-point Padé approximants. Examples of multi-point Padé approxi-
mants have been proposed by Jedynak [15] and Darabi and Itskov [16].
Kroger [2] improved some of the aforementioned single- and multi-point
Padé approximants considering the exact asymptotic, symmetry and in-
tegral behavior of the inverse Langevin function.

In the last years, a new trend of improving some of the existing ap-
proximants by optimization methods has emerged. Such is the case of
the error-corrected approximants developed by Nguessong et al. [17].
They improved the accuracy of some of the above mentioned multi-
point Padé approximants calculating the error functions corresponding
to the approximant and subtracting both. To do so, Neguessong et al.
[17] developed an optimization of the error function parameters by
a least squares minimization. Following this idea, Marchi and Arruda
[18] proposed not only the optimization of these parameters but also
the polynomial coefficients of the approximant to minimize its relative
error. Recently, Petrosyan [19] deduced a function accounting for the
asymptotic behavior of the inverse Langevin function and minimized its
absolute error with a sine and a quadratic function.

Also recently, Jedynak [11] improved the approximants given by
Kroger [2] and proposed a new one applying the minimax approxima-
tion theory. The approximation theory is a method to determine the
degree of the polynomial or rational approximation that minimizes the
error of a certain function. Jedynak minimized the relative error of the
inverse Langevin function increasing the complexity of the Kroger inter-
polant to 11, that is to say with a rational function of [9/2] degree. The
polynomial coefficients were determined solving a system of nonlinear
equations by means of Remez’s algorithm.

An approximant not based on Taylor series or Padé functions was
proposed by Bergstrom. It is a piecewise function resulting from dividing
the domain in two subdomains to account for the asymptotic behavior of
£71, Ref.[20]. Despite having good accuracy, this approximant has some
drawbacks that make its application to physical problems difficult, see
Refs.[15] and [18].

The fact that most of the above-mentioned papers have been pub-
lished in the last four years, from 2014 to 2017, shows that the calcu-
lation of the inverse Langevin function is of much current interest and
that a satisfactory, computationally efficient and accurate solution has
not been reached yet [2,11,15,16,18,19]. These works have been mainly
focussed on improving the accuracy of previous researches. To summa-
rize and to compare the accuracy of the main approximants proposed,
their maximum relative error, ¢,, is shown in Table 1. According to these
data, a lot of effort has been invested to reduce the maximum relative er-
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ror of the rounded Cohen approximant in only one order of magnitude,
O(107'%) in the case of Kroger or Petrosyan. The order of magnitude
of the error has not improved substantially with the error minimizing
techniques. With this optimization methods the order of magnitude of
the relative error is 0(1072 — 1073%) [11,17,18].

The accuracy of the inverse Langevin function is not a minor issue
since it has a relevant influence in the results obtained in computational
simulations. Indeed, the inverse Langevin function is used in many mod-
els implemented in finite element codes [1,21-24], including commer-
cial finite element programs such as ABAQUS or ADINA. During simu-
lations, the inverse Langevin function is typically evaluated millions of
times, so iterative methods are avoided and explicit approximants are
preferred. Recently, Ammar has shown the important influence of the
approximants accuracy in the results obtained in simple finite element
simulations in the framework of the dilute polymer kinetic theory [1].
When complex calculations are performed, the approximant accuracy
can be a critical factor to obtain reliable results. Therefore, an approx-
imation of the inverse Langevin function with a simple and computa-
tionally efficient implementation in a finite element code, and with a
suitable accuracy, is needed to ensure adequate efficient computational
predictions.

In this paper we present a simple computationally-oriented tech-
nique to calculate the inverse Langevin function that reduces the maxi-
mum relative error close to the one that a computer can obtain. In this
proposal, the inverse Langevin function is obtained by means of a cubic
spline representation of the function. However, to reproduce the asymp-
tote at x = 1, the discretization close to the asymptotic zone is replaced
by a [1/2] rational function that fulfills C 1 continuity conditions with
cubic splines, so constitutive tangents keep continuity. Thus, the approx-
imation to the inverse Langevin function consists in a series of piecewise
polynomials and a rational function in the vicinity of the asymptote. The
derivatives and integrals are also immediate (explicit) and continuous.
We note that although this method requires the calculation of the spline
coefficients, these coefficients are obtained just once. In fact, the coef-
ficients can be previously stored and embedded in the code at program
compilation time. The price to pay for high accuracy and efficiency is an
increased storage. However, the storage needs are negligible for current
digital devices. For example, if the Langevin function discretization is
performed in 10,001 points (a number of points that gives high accuracy
as shown below), 10,000 cubic splines must be calculated. Considering
that every polynomial has four coefficients, 40,000 coefficients have to
be stored in the computer memory. Taking into account that a double
precision number is stored in 8 bytes, 320kB are necessary to store all
the spline coefficients, which is at least four orders of magnitude less
than the typical RAM memory (e.g. 6GB) of an economic laptop com-
puter or a graphic card (GPU), and also several orders of magnitude
less than the typical memory needed to solve an industry problem. Near
machine precision is obtained with 100,000 spline pieces which takes
just about 3MB of memory. Remarkably, function evaluation times are
almost independent of the desired, and obtained, accuracy.

Matlab codes are given in the appendices and commented in the text
below. Although the method is explained using Matlab, its implementa-
tion in any computer language is straightforward.

2. Determination of the inverse Langevin function by cubic
splines interpolation

2.1. Splines

Piecewise cubic splines are cubic interpolating polynomials which
have minimum curvature and preserve continuity of derivatives be-
tween contiguous segments up to second order. Some background on
splines may be found, for example in Reference [25]. Some applications
in the context of hyperelasticity in polymers and biological tissues may
be found, for example, in [26-30].
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