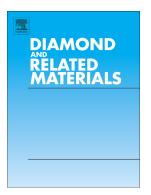
Accepted Manuscript

Conduction pathways in CNF/PTFE composite: Air oxidized CNFs coated with the incomplete layer of PTFE

Fateh Singh Gill, Sarita Chandra, Varij Panwar, Divya Uniyal, G.S. Kalra, Vinay Kumar, Preeti Garg

PII: S0925-9635(18)30379-0

DOI: doi:10.1016/j.diamond.2018.08.015


Reference: DIAMAT 7188

To appear in: Diamond & Related Materials

Received date: 30 May 2018
Revised date: 21 July 2018
Accepted date: 30 August 2018

Please cite this article as: Fateh Singh Gill, Sarita Chandra, Varij Panwar, Divya Uniyal, G.S. Kalra, Vinay Kumar, Preeti Garg, Conduction pathways in CNF/PTFE composite: Air oxidized CNFs coated with the incomplete layer of PTFE. Diamat (2018), doi:10.1016/j.diamond.2018.08.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANU

Conduction pathways in CNF/PTFE composite: Air oxidized CNFs

coated with the incomplete layer of PTFE

Fateh Singh Gill^{1*}, Sarita Chandra¹, Varij Panwar¹, Divya Uniyal¹, G. S. Kalra¹, Vinay Kumar¹,

Preeti Garg²

¹Graphic Era University, Bell Road, Clement Town, Dehradun, India,

²National Physical laboratory (NPL), Delhi, India

*Corresponding author: drfatehs@gmail.com

Abstract

In the present work, the conduction pathways by air oxidized carbon nanofibers (CNFs)

(coated with Polytetrafluoroethylene (PTFE)) dispersed in PTFE polymer have been studied and

explored with backbone and dangling ends model. The utility of critical exponents (t) explained

the distribution status of CNFs and indicated the possibility of charge transport by ohmic

conduction due to connected conducting channels of CNF and tunneling transmission between

close CNFs. A 5 wt% sample exhibit a conductivity of 1.91 S/m. Moreover, a cost and material

saving method of coating of decomposed PTFE on CNF; regardless of the coating thickness are

discussed and studied in order to improve interfacial interaction and dispersion within the

polymer without using sonication. Some interesting and informative evidence have also been

revealed as a decrease in d-spacing of <002> layer of a CNF after heat treatment at ~800°C in air

and confirmation of presence and coating of hexafluoropropylene (HFP) and Octafluoro-1-

butene (OF1B) thermal products of PTFE on CNFs by FTIR and TEM respectively.

Keywords: Nanocomposite; Carbon nanofibers; Sintering; Coating; backbone and dangling ends; X-ray

diffraction (XRD).

Download English Version:

https://daneshyari.com/en/article/9952699

Download Persian Version:

https://daneshyari.com/article/9952699

Daneshyari.com