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In everyday communication, speakers make errors and produce language in a noisy environment. Recent work
suggests that comprehenders possess cognitive mechanisms for dealing with noise in the linguistic signal: a noisy-
channel model. A key parameter of these models is the noise model: the comprehender’s implicit model of how
noise affects utterances before they are perceived. Here we examine this noise model in detail, asking whether
comprehension behavior reflects a noise model that is adapted to context. We asked readers to correct sentences

if they noticed errors, and manipulated context by including exposure sentences containing obvious deletions (A
bystander was rescued by the fireman in the nick time.), insertions, exchanges, mixed errors, or no errors. On test
sentences (The bat swung the player.), participants’ corrections differed depending on the exposure condition. The
results demonstrate that participants model specific types of errors and make inferences about the intentions of

the speaker accordingly.

1. Introduction

Everyday language use occurs amid myriad sources of noise. In a
conversation, the speaker may say one word when she intended to say
another, there may be other conversations going on in the same room,
and the listener may mishear what was said. Each of these types of noise
serves to corrupt the signal that is transmitted from speaker to listener
(Shannon, 1948). One might think that such noise would pose major
impediments to efficient communication. Yet language comprehension
typically unfolds without noticeable effort.

Because of this noise, comprehenders maintain uncertainty about
the nature of preceding words. When reading sentences such as, “The
coach smiled at the player tossed the ball” readers’ eye movements
indicate that they leave open the possibility that “at” was actually
“and.” Replacing “at” with “and” allows the interpretation of “tossed”
as a finite verb rather than a past participle; the former interpretation
has a much higher conditional probability (Levy, Bicknell, Slattery, &
Rayner, 2009). Thus, readers have probabilistic representations of
language input—in particular, syntactic constructions—and use prior
knowledge to infer the intended meaning.

Recent theories have proposed that the language processing system
maintains uncertainty about the input because it is designed to opti-
mally decode the intended meaning from a signal transmitted over a
noisy channel (Bergen, Levy, & Gibson, 2012; Gibson, Bergen, &

Piantadosi, 2013; Jaeger, 2010; Levy et al., 2009; Levy, 2008). In
particular, Gibson et al. (2013) lay out a framework for sentence
comprehension that entails the rational (Bayesian) integration of
noisy evidence and semantic priors. On their account, the producer
chooses an intended sentence s; in order to communicate her intended
meaning, m;. s; is conveyed across a noisy channel and is corrupted by
noise originating from the producer, comprehender, or environment.
The comprehender perceives sentence s, and tries to infer s;. Com-
munication succeeds when the intended sentence s; can be recovered
from s,. This process can be formalized by considering an ideal ob-
server (Geisler & Diehl, 2003) model of language comprehension,
where the comprehender engages in optimal Bayesian decoding of the
intended meaning:

P(silsp) o P(s:)P(si — sp) €))]

In Eq. (1), P(sysp) represents the probability assigned by the
comprehender to any hypothesized s;, given the observed linguistic
input s,. By Bayes rule, this probability can be rewritten as the prior
probability P(s;) that a producer would wish to communicate s;, mul-
tiplied by the probability of s; being corrupted to s, during commu-
nication, P(s; —sp). The prior, P(s), represents the comprehender’s
relevant linguistic and world knowledge, and biases comprehenders
towards a priori plausible utterances. The noise model P(s; —s,) en-
codes the comprehender’s knowledge of how sentences can be
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corrupted—for instance, smaller changes to a sentence are more likely
than larger ones. By integrating P(s;) and P(s; —s,), comprehenders
may arrive at interpretations which differ from the literal meanings of
the acoustic or visual stream. That is, if comprehenders perceive an
implausible sentence s, (e.g., The oven cleaned the grandmother)
which is “close” to a more plausible sentence (e.g., The grandmother
cleaned the oven), they should infer that the producer actually uttered
(or intended to utter) the plausible version.

Gibson et al. (2013) provide evidence for several predictions of the
noisy-channel framework in a series of experiments where participants
read implausible sentences (e.g., The oven cleaned the grandmother)
followed by comprehension questions (e.g., Was the grandmother
cleaned by someone/something?), which probed whether participants
interpreted the sentence literally (answer: Yes) or inferred that the in-
tended sentence had been corrupted (answer: No). They found that
comprehenders were (a) more willing to forego the literal interpreta-
tion when the semantically plausible interpretation involved positing
fewer changes, (b) more likely to infer nonliteral meanings when the
change involved a deletion compared to an insertion, consistent with
the Bayesian size principle (Xu & Tenenbaum, 2007), (c) more likely to
endorse literal interpretations when the fillers contained errors, in-
dicating that they had inferred a higher noise rate; and (d) less likely to
endorse literal interpretations when the base rate of implausible sen-
tences was increased, suggesting that they had adjusted their semantic
prior. Further, Poppels and Levy (2016) replicated these results and
demonstrated that, in addition to deletions and insertions, word ex-
changes represent a likely form of corruption (e.g., The package fell
from the floor to the table.).

1.1. Noise variation

Gibson et al. (2013) demonstrated that participants adapt their
noise model when provided with evidence of a high base-rate of
syntactic errors. Further, listeners infer a higher noise rate when
listening to foreign-accented speech (Gibson et al., 2017). Yet, how
the noise likelihood term (s; —s,) responds to input characteristics
beyond error rate has yet to be explored. Critically, we can ask: is the
noise model sensitive to the nature of errors or simply to the rate of
errors?

In real-world language use, many properties of the noise, beyond
the rate, vary with context. For example, second language (L2) lear-
ners may make certain errors in English that a native speaker is un-
likely to make and that are influenced by their native language (see
MacWhinney, 1992). Native speakers of Russian tend to omit articles
when speaking L2 English (e.g., Ionin, Ko, & Wexler, 2004), while
native speakers of French may exchange the orders of adjectives and
nouns in L2 English (Nicoladis, 2006). If the comprehender’s noise
model is sensitive to the nature of errors, it will have different prop-
erties when listening to an L2 English speaker from Russia than to an
L2 English speaker from France. However, if the noise model is sen-
sitive to an overall rate of errors, it will be similar for the two
speakers.

Recent findings suggest that comprehenders rapidly learn and adapt
to the linguistic patterns (e.g., frequencies of syntactic constructions,
phonetic category boundaries) present in their environment in order to
achieve more efficient language processing (Fine, Jaeger, Farmer, &
Qian, 2013; Kleinschmidt & Jaeger, 2015; Ryskin, Qi, Duff, & Brown-
Schmidt, 2017; though see Harrington Stack, James, & Watson, 2018
for an example of limits on this ability). Similarly, comprehenders may
track the types of errors they perceive in a given environment and ra-
pidly adapt the likelihoods of components of the noise model. For
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example, after hearing a speaker repeatedly drop articles (e.g., “We had
nice time at beach.”), the listener’s noise model may put high prob-
ability on certain words being deleted, but the probability of insertions
may not change. Thus, the noise model for the article-dropping speaker
would have a larger ratio of deletions to other errors, as compared to
the noise model for a generic, native English speaker. Forming these
fine-grained, context-specific representations of the noise would likely
allow comprehenders to make more accurate inferences about the in-
tended meaning s;. We call such a noise model a context-specific noise
model.

On the other hand, hearing a speaker repeatedly drop articles may
lead the listener’s noise model to put higher probability on all possible
errors, perhaps on the reasonable assumption that a speaker who makes
one type of error is likely to also make other errors in the future. Under
such a context-invariant noise account, the comprehender’s noise model
always possesses the same general properties (e.g., more edits are less
likely than fewer edits, insertions are less likely than deletions) and
varies only in the base-rate of corruptions. In an environment with a
high base-rate of errors, comprehenders simply increase the likelihoods
of all errors by a constant. In every other respect, the probabilities of
different occurrences (e.g., deletions vs. insertions) maintain the same
ratio across contexts. Inferring the noise model would then simply re-
flect the process of adjusting all the likelihoods in the noise model up or
down, depending on recent evidence.

Whether comprehenders have context-invariant or context-specific
noise models gets at the more general question of how people trade off
complexity of models and accuracy in prediction. If the context-in-
variant model is correct, then this suggests that comprehenders weight
model simplicity as more important than accuracy in prediction: the
context-invariant noise model only has one parameter, the noise rate,
and thus it should be easier to learn and deploy than a more complex
model. If the context-specific model is true, then comprehenders weight
accuracy as more important than model complexity in this case: the
context-specific model achieves higher accuracy at the cost of greater
complexity. The optimal tradeoff of accuracy and complexity will de-
pend on the true rate of context-specificity in the world and on the
exact nature of the complexity cost for noise models. These complexity-
accuracy tradeoffs are at the heart of all theories of statistical learning
(MacKay, 2003; Solomonoff, 1964). Investigating these two particular
hypotheses in the context of noisy-channel language understanding
allows us to develop models of how complexity and accuracy trade off
in language processing.

In the present experiments, we test these hypotheses by probing
readers’ inferences about intended meanings of sentences and ma-
nipulating the experimental context to include sentences with specific
types of errors (e.g., deletions, insertions, or exchanges). If compre-
henders track the base-rate of errors but don’t model the nature of the
errors (context-invariant), they should make more inferences when
they’re exposed to errors than when the context contains only error-
free sentences (Gibson et al., 2013), but the pattern of inferences
should not differ by type of error exposure. However, if readers track
more fine-grained error information beyond the base-rate (context-
specific), their inferences should be sensitive to the type of error they
experienced.

The goals of Experiment 1 were to a) replicate the effect of in-
creasing the noise rate observed in Gibson et al. (2013) using a more
direct measure (retyping and editing rather than comprehension ques-
tions), and b) test whether readers are sensitive to the nature of noise in
the exposure. The goal of Experiment 2 was to run a pre-registered
replication of Experiment 1 using a large sample size determined by a
simulation-based power analysis of Experiment 1.
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