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A B S T R A C T

Identification of the relationship between landscape metrics and urban land surface temperature (LST) provides
a basic understanding of the interaction of landscape pattern and ecological process. However, the evidenced
relationships between landscape metrics and LST are still uncertain, and cannot provide fundamental support to
landscape management. Other than a test of statistical significance, four judgments (median correlation value;
temporal variation and statistical scale; threshold; and effects of key variables) are considered “efficient” criteria
in this study. Partial correlation and piecewise linear regression are used to focus on the indicators of land cover
proportion, biophysical proportion, and mainly area- or shape-related landscape configuration indicators. The
results show: (1) land cover proportion can almost substitute for area-related landscape configuration indicators;
(2) landscape composition is more efficient than configuration as an indicator because of its relatively stable
temporal correlation values at different statistical scales; (3) the evident landscape composition threshold of
vegetated land surfaces (50–70% for land cover proportion and 0.2–0.3 for biophysical proportion) is more
indicative in application than the linear relationship for unvegetated land surfaces; and (4) landscape metrics are
better correlated with LST in high temperature than in low temperature, and urban area weakly influences this
correlation (R2 < 0.2). Additionally, the configuration metrics at a landscape level are not recommended for
characterizing LST. Depended on the efficient indicators, such as the application of thresholds, landscape
planning can be linked to the quantitative observations and statistical evidence in landscape metrics.

1. Introduction

Climate warming and rapid urbanization have increased the heat
stress in cities and especially in megacities (Dugord, Lauf, Schuster, &
Kleinschmit, 2014; Harlan and Ruddell, 2011; Jenerette et al., 2016;
Oke, 1973). Improving the ability of megacities to adapt to heat stress is
an interdisciplinary issue that has aroused wide academic attention,
particularly to reveal factors that influence urban heat island formation
(Arnfield, 2003; Hu and Brunsell, 2015; Huang and Cadenasso, 2016;
Imhoff, Zhang, Wolfe, & Bounoua, 2010). Observation of urban land
surface temperature (LST) from remote sensing images is a common
technique for studying the relationship between land cover and urban
heat islands (Chen, Zhao, Li, & Yin, 2006; Huang, Zhou, & Cadenasso,
2011; Voogt and Oke, 2003; Weng, 2009; Weng, Lu, & Schubring,
2004). However, although relationships between landscape metrics and
LST have been shown, the results are inconsistent and uncertain, and
cannot yet provide explicit support for heat stress mitigation through
landscape planning (Du, Xiong, Wang, & Guo, 2016; Estoque,

Murayama, & Myint, 2017; Li et al., 2011; Zhou and Wang, 2011; Zhou,
Wang, & Cadenasso, 2017).

In particular, although greenspace is commonly understood to have
a cooling effect and impervious surface to have a warming effect, var-
ious landscape metrics, especially landscape configuration indicators,
have an uncertain relationship with LST due to climatic conditions,
statistical methods used, spatial resolution of data and the size of
analytical units (Zhou et al., 2017). Furthermore, even when significant
correlations between landscape composition and configuration and LST
are found, their use in guiding landscape planning is obscure (Sun and
Chen, 2017; Wu, Kong, Wang, Sun, & Chen, 2016; Xiao et al., 2007;
Yuan and Bauer, 2007). This practical obstacle indicates that evidence
from previous studies may not be powerful enough to adequately
measure the relationship between landscape pattern and LST, and that
more comprehensive consideration is required to identify this re-
lationship.

To reduce the uncertainty and enhance the practicability of the
relationship between landscape pattern and LST, we consider that the
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significance test for variables correlation from only a few remote sen-
sing images is not sufficient. Four additional aspects should be quan-
titatively examined, and we use the term “efficient” to comprehensively
generalize the adequacy of these aspects. The first of these is the median
correlation value of an indicator obtained from a large number of
images (hereafter the “median correlation value” is shortened as “cor-
relation value”). A high correlation is basic evidence that an indicator is
efficient in individually characterizing LST (Asgarian, Amiri, & Sakieh,
2015; Chen, Yao, Sun, & Chen, 2014a; Connors, Galletti, & Chow, 2013;
Estoque et al., 2017; Ma, Kuang, & Huang, 2010; Sun, Chen, Chen, & Lü,
2012). Second, the variation of a relationship in both temporal and
spatial scales must be considered. A temporally stable and scale-de-
pendent relationship is more efficient and widely applicable (Fan,
Myint, & Zheng, 2015; Li, Zhou, & Ouyang, 2013; Song, Du, Feng, &
Guo, 2014). The third aspect is the threshold in form of discontinuities
in a mathematical sense. A clear threshold can effectively provide a
planning target for constructing green infrastructure or limiting
building land (Peng, Xie, Liu, & Ma, 2016). Last, the effects of key
variable values on the relationship must be considered. Although the
effect of LST in different seasons has been widely examined (Haashemi,
Weng, Darvishi, & Alavipanah, 2016; Weng, Liu, Liang, & Lu, 2008;
Zhou, Qian, Li, Li, & Han, 2014), the quantitative effect of LST differ-
ence remains to be detailed, and whether the relationship changes in
the different amount of urban area is unknown. The identification of
these effects can give evidence for when and where a landscape pattern-
LST relationship will be efficient.

According to the above aspects, four scientific sub-questions can be
formulated. Firstly, what kind of landscape configuration indicator is
individually more highly correlated with LST than other configuration
indicators? Secondly, which landscape metric is more stable in the time
domain and dependent at various spatial scales? Thirdly, is there any
practical threshold for a landscape metric that can guide landscape
planning and management? Lastly, when or where can specific land-
scape metrics characterize LST best? Furthermore, the correlation value
between landscape configuration and LST should be determined within
a controlled landscape composition, in order to reduce the multi-
collinearity among the metrics (Peng et al., 2010; Uuemaa, Mander, &
Marja, 2013).

Shenzhen City, one of China’s 4 megacities, has experienced an
obvious landscape change in the last 40 years. In this study, the main
city of Shenzhen was used as the study area, and partial correlation and
piecewise linear regression were used to examine the relationship

between landscape metrics and LST. With the final goal of finding a way
to mitigate heat stress through landscape adaption, four detailed ob-
jectives were defined using the “efficient” criteria: (1) identify which
landscape indicator is valid or invalid in practice; (2) select an indicator
that has a stable correlation with LST in the time domain and at various
spatial scales; (3) quantify the practical threshold of landscape pattern
nonlinearly influencing LST; and (4) detail the effects of mean LST and
unvegetated land surfaces that influencing the relationships.

2. Methods

2.1. Study area

Shenzhen City (approximately 1997 km2, 113°46′–114°37′E,
22°27′–22°52′N) has a subtropical oceanic climate. The average air
temperature is 14.9 °C in January and 28.6 °C in July. The average
annual air temperature is 22.4 °C, and is below 20 °C from December to
March. The average annual precipitation is 1933.3 mm, and the wet
season is from April to September. A long summer and short winter lead
to a high thermal exposure for the city. Shenzhen City is one of the top
four economic centers of China. During the last nearly 40 years,
Shenzhen has urbanized from a small town in China’s southern frontier
to become a megacity. In 2016, the permanent resident population was
almost 12 million, accompanied with the Gross Domestic Product of
approximately 1950 billion Chinese Yuan. The economic success has
been accompanied by rapid urban sprawl, and the increased impervious
surface and energy emission aggravates the heat stress. As the admin-
istrative boundary of Shenzhen City cannot be completely covered by a
unique Landsat images, we extracted the main city of Shenzhen defined
by the width of Landsat images in this study (Fig. 1).

2.2. Data preprocessing

To ensure image quality, only clear-sky Landsat images were used
(https://landsat.usgs.gov), and 49 images were selected from acquisi-
tions made during 1987–2015 (Table 1); The atmospheric correction
method was applied to retrieve LST from the images, and a decision tree
method was used to interpret land cover type (Liu, Peng, & Wang,
2017). The algorithms were programmed in Matlab (Version 2014a,
Mathworks, Inc., Natick, MA, USA). In order to avoid repetitive, we
only introduce the data structure, and not detail the land cover classi-
fication and LST retrieval algorithm.

Fig. 1. Location of Shenzhen City in Guangdong Province, China (left) and the main city as defined by Landsat image width (right). The band combination was band-
6, band-5, and band-4 coloured by red, green and blue, respectively.
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