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a b s t r a c t

Let (B(t), t ≥ 0) denote the standard, one-dimensional Wiener process and (ℓ(y, t); y ∈

R, t ≥ 0) its local time at level y up to time t . Then
(
(B(t), ℓ(B(t), t)), t ≥ 0

)
is a random,

continuous path that fills the upper half-plane, covering one unit of area per unit time.
© 2018 Elsevier B.V. All rights reserved.

There is a tradition of classical, so-called ‘‘pathological’’ properties for functions arising naturally in the study of Brownian
motion. Here are few examples of this. One-dimensional Brownian motion is a continuous, nowhere differentiable function.
Its zero set in a bounded interval, {t ∈ [0, 1] : B(t) = 0} is homeomorphic to the Cantor set. Despite this set having zero
Lebesgue measure, there is a way of quantifying howmuch time the Brownian path spends at (or more precisely, near) zero
(or any other value y ∈ R), called the local time:

ℓ(y, t) := lim
ϵ→0

(2ϵ)−1Leb
{
u ∈ [0, t] : |B(u) − y| < ϵ

}
. (1)

The process (ℓ(0, t), t ≥ 0) is then a randomized variant of the Cantor function, also known as the Devil’s staircase: it is
continuous everywhere, has derivative zero almost everywhere, and yet it increases without bound. See Mörters and Peres
(2010, Chapter 6) for more background on Brownian local times.

The existence of space-filling curves was first proved by Peano, who gave a deterministic, recursive construction, which
was later simplified by Mandelbrot (1977). This note seeks to bring attention to another pathological example arising from
Brownian motion, which has been neglected in the literature: that of a random space-filling curve arising naturally from
Brownian local times.

The discrete random bricklayer

Imagine a worker building a wall by stacking blocks vertically, in side-by-side columns. The worker starts by setting a
single block in front of themselves. They then flip a coin, stepping to the right if they get heads or to the left if tails before
placing the next block. They repeat this process ad infinitum, flipping, moving, and stacking blocks. See Fig. 1.

We label sites by integers, with the worker’s initial position labeled ‘0’. The worker’s left-to-right motion is the simple
random walk on Z. The number of blocks stacked at site j after the first n steps is called the occupation time of the walk at j
up to time n.

The simple randomwalk on Z is transitive and recurrent (Durrett, 2010), meaning that it visits every site infinitely many
times. Thus, the wall ultimately grows infinitely high at every site. Now suppose the blocks are labeled by the time at which

E-mail address: nforman@uw.edu.

https://doi.org/10.1016/j.spl.2018.07.010
0167-7152/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.spl.2018.07.010
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2018.07.010&domain=pdf
mailto:nforman@uw.edu
https://doi.org/10.1016/j.spl.2018.07.010


44 N. Forman / Statistics and Probability Letters 143 (2018) 43–46

Fig. 1. A simulated trajectory of the discrete bricklayer, run for 1000 steps.

they were placed and we run a string across the front of the infinite wall, connecting consecutively numbered blocks. It is
possible that adjacent columns can be at significantly different heights, so the string may run nearly vertical. But this will
be uncommon, with the string usually taking smaller vertical steps, since the worker will have visited adjacent sites similar
numbers of times (Csörgő and Révész, 1985, Theorem 1).

The Brownian bricklayer

For each n ≥ 0, j ∈ Z, let S(n) denote the worker’s position after n steps and L(j, n) the height of the column at site j
at this time. Donsker’s theorem states that simple random walk converges in distribution, as a process, in a scaling limit to
standard, one-dimensional Brownian motion:(

n−1/2S⌈nt⌉, t ≥ 0
) d

→ (B(t), t ≥ 0). (2)

Knight (1963) strengthened this result, showing the joint convergence((
n−1/2S

(
⌈nt⌉

)
, t ≥ 0

)
,

(
n−1L

(
⌈ny⌉, ⌈nt⌉

)
; t ≥ 0, y ∈ R

))
d

→
(
(B(t), t ≥ 0), (ℓ(y, t); t ≥ 0, y ∈ R)

)
,

(3)

where ℓ(y, t) is the local time defined in (1). We define the Brownian bricklayer to be the process

K (t) :=
(
B(t), ℓ(B(t), t)

)
, t ≥ 0. (4)

In analogywith our discrete-timedescription, the first coordinate of this process describes the current location of a bricklayer
as theymoveup anddown the line, and the seconddescribes the height of thewall in front of the bricklayer’s current location.
Extending the analogy, the wall itself at time t is described by the local time profile (ℓ(y, t), y ∈ R).

Theorem 1. The process
(
K (t), t ≥ 0

)
is almost surely (a.s.) path continuous, and its path a.s. fills the upper half plane.

I.e. {K (t) : t ≥ 0} = R × [0, ∞) almost surely.

To prove this result, we appeal to two well-known properties of Brownian local times.

(1) Trotter’s theorem (Mörters and Peres, 2010, Theorem 6.19): the random field (ℓ(y, t); y ∈ R, t ≥ 0) admits an
a.s. continuous version. I.e. there is an a.s. event on which the limit ℓ(y, t) is defined and continuous at all points
(y, t) ∈ R × [0, ∞).

(2) It is a.s. the case that, for every y ∈ R, the process (ℓ(y, t), t ≥ 0) increases without bound. This is a corollary to Ray’s
Theorem (Mörters and Peres, 2010, Theorem 6.38) by way of the strong Markov property.

Let Ω ′ denote an a.s. event on which both of the above properties hold.

Proof of Theorem 1. The continuity of (K (t), t ≥ 0) follows from Trotter’s theorem and the continuity of Brownian motion
itself. It remains to show that the path is a.s. space-filling. To that end, fix (y, s) ∈ R × [0, ∞). It suffices to show that for
every outcome ω ∈ Ω ′ there is some T = T (ω, y, s) for which

(
B(T ), ℓ(B(T ), T )

)
= (y, s).
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