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h i g h l i g h t s

• Two new recursive estimators are developed for homogeneous gamma process.
• We show that the two estimators are weakly consistent.
• We compare the two new estimators with these of Paroissin (2017) by simulations.
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a b s t r a c t

In this paper, two new estimators based on the spirit of the best linear unbiased estimators
are separately developed for homogeneous gamma process. Both estimators can be com-
puted recursively, and have high efficiency. We compare the two new estimators with
these of Paroissin (2017) by simulations, and find that ours have smaller biases and mean
squared errors.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

On-line inference has become an indispensable technique in prognostic and health management (Si et al., 2011; Guan 2

et al., 2016; Wang et al., 2018; Xu et al., 2018; Zhou and Xu, 2018). Most of the on-line inference methods are developed 3

based on the Wiener process. However, the Wiener process is suitable only for degradation processes that is not monotone. 4

For the monotone degradation process, the gamma process is more effective and has received wide applications (Lawless 5

and Crowder, 2004; Ye et al., 2014; Guida et al., 2015; Le Son et al., 2016). Recently, Paroissin (2017) considered on-line 6

estimation of the following homogeneous gamma degradation process {X(t), t ≥ 0}: 7

1. X(0) = 0. 8

2. X(t) has independent increments. 9

3. The increment X(t + ∆t) − X(t) follows the gamma distribution with shape parameter a∆t and rate parameter b. 10

Consider n identical items whose degradation of a performance characteristic follows the above homogeneous gamma 11

process, and let 0 = t0 < t1 < t2 < · · · < tm < · · · be the measurement time epoches identical for all items, and 12

Xi(tj) be the degradation value of the ith item at time tj. Let Yi,j = Xi(tj)−Xi(tj−1) and sj = tj − tj−1, j = 1, . . . ,m, i = 1, . . . , n. 13
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Then Yi,j follows the gamma distribution with shape parameter asj and rate parameter b. Following the notation in Paroissin1

(2017), let Ỹi,j = Yi,j/sj, Ȳ·,j =
1
n

∑n
i=1Ỹi,j and τ 2

j =
sj

n−1

∑n
i=1

(
Ỹi,j − Ȳ·,j

)2
. Then E(Ȳ·,j) = a/b .

= µ and E(τ 2
j ) = a/b2 .

= σ 2.2

Paroissin (2017) proposed two estimators for µ and σ 2, which can be computed recursively. Out of the two, the following3

was shown to have better performance:4

µ̂m =
1
tm

m∑
j=1

sjȲ·,j = µ̂m−1 +
sm
tm

(
Ȳ·,m − µ̂m−1

)
, (1)5

6

σ̂ 2
1,m =

1
tm

m∑
j=1

sjτ 2
j = σ̂ 2

1,m−1 +
sm
tm

(
τ 2
m − σ̂ 2

1,m−1

)
. (2)7

Based on the above, a and b at the mth stage can be estimated by â1,m = µ̂2
m/σ̂ 2

1,m and b̂1,m = µ̂m/σ̂ 2
1,m, respectively.8

Notice that tm =
∑m

j=1sj, we have E(µ̂m) =
1
tm

∑m
j=1sjE(Ȳ·,j) = µ and E(σ̂ 2

1,m) =
1
tm

∑m
j=1sjE(τ

2
j ) = σ 2. Besides, µ̂m9

and σ̂ 2
1,m are linear combination of {Ȳ·,j, j = 1, . . . ,m} and {σ̂ 2

1,m, j = 1, . . . ,m}, respectively. Thus, both µ̂m and σ̂ 2
1,m10

are linear unbiased estimators. Linear unbiased estimator has been widely used in statistics. The merit of linear unbiased11

estimator is that it can be constructed easily and be derived recursively. For example, least squares estimator for the linear12

regression model is a linear combination of the observations, and is also the best linear unbiased estimator (BLUE) of the13

model parameters. The basic idea to select the BLUE is to find the estimator with the smallest variance in a set of linear14

unbiased estimators. In view of the fact that Paroissin (2017)’s estimators are linear unbiased estimators, the objective of15

this paper is to improve these estimators by finding the BLUEs of µ and σ 2.16

The paper is organized as follows. In Section 2, we propose two new estimators, and the consistency of the estimators17

is shown. In Section 3, a simulation study is performed to compare the new estimators with these from Paroissin (2017). A18

data set is analyzed for illustration in Section 4. Finally, we give a conclusion of this paper.19

2. New estimators20

As mentioned before, both estimators proposed by Paroissin (2017) are linear unbiased estimators. This observation21

motivates us to find more efficient estimators in the set of linear unbiased estimators of µ and σ 2. For the parameter µ, we22

consider the set of linear unbiased estimators Uµ =
{∑m

j=1αjȲ·,j,
∑m

j=1αj = 1
}
. Then, for any µ̂ ∈ Uµ,23

Var(µ̂) =

m∑
j=1

α2
j Var

(
Ȳ·,j

)
=

m∑
j=1

α2
j σ

2/(nsj).24

Taking the first derivatives of Var(µ̂) with respect to αj, and letting them equal zero, we have25

αj/(nsj) − (1 − α1 − · · · − αm−1)/(nsm) = 0, j = 1, 2, . . . ,m − 1,26

which leads toαj = sj/(s1+s2+· · ·+sm) = sj/tm. Thus, µ̂m in (1) is the best linear unbiased estimator in the setUµ. Similarly,27

for the parameter σ 2, we consider the set of linear unbiased estimators Uσ2 =
{∑m

j=1βjτ
2
j ,

∑m
j=1βj = 1

}
. From Paroissin28

(2017), we have29

Var(τ 2
j ) =

2a2

(n − 1)b4
+

6a
nb4sj

= V1(1 + V0/sj),30

where V1 =
2a2

(n−1)b4
and V0 =

3(n−1)
na . For any σ̂ 2

∈ Uσ2 ,31

Var(σ̂ 2) =

m∑
j=1

β2
j Var

(
τ 2
j

)
=

m∑
j=1

β2
j V1(1 + V0/sj).32

Taking the first derivatives of Var(σ̂ 2) with respect to βj, and letting them equal zero, we have33

βj(1 + V0/sj) − (1 − β1 − · · · − βm−1)(1 + V0/sm) = 0, j = 1, 2, . . . ,m − 1,34

which follows that35

βj =
(1 + V0/sj)−1∑m
j=1(1 + V0/sj)−1

. (3)36

Thus, if the shape parameter a is known, then the best linear unbiased estimator in the set Uσ2 is37

σ̂ 2
m =

∑m
j=1(1 + V0/sj)−1τ 2

j∑m
j=1(1 + V0/sj)−1

= σ̂ 2
m−1 +

(1 + V0/sm)−1(τ 2
m − σ̂ 2

m−1)∑m
j=1(1 + V0/sj)−1

.38
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