Factorizable non-atomic copulas

Tanes Printechapat, Songkiat Sumetkijakan *
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, Thailand

ARTICLE INFO

Article history:

Received 22 June 2017
Received in revised form 30 July 2018
Accepted 5 August 2018
Available online 10 August 2018

MSC:

28A05
47B65
60A10
Keywords:
Copula
Non-atomic
Associated sigma-algebra
Factorizability
Markov operator

Abstract

Generalizing the notion of invariant sets by Darsow and Olsen, Sumetkijakan studied a subclass of singular copulas, the so-called non-atomic copulas, defined via its associated σ-algebras. It was shown that the Markov operator of every non-atomic copula is partially factorizable, i.e. it is the composition of left and right invertible Markov operators on a subspace of $L^{1}([0,1])$ depending on the copula. Here, we further investigate the associated σ-algebras of the product of certain copulas and obtain (1) a sharper result on the partial factorizability of non-atomic copulas and (2) the existence and uniqueness of a completely factorizable copula that shares the same set of associated σ-algebras as that of a given non-atomic copula.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

One of the most notable developments in the study of copulas is due to Darsow et al. (1992), where a binary operation * on the set of bivariate copulas was introduced and thoroughly studied. It was shown by Olsen et al. (1996) that there is a bijective isomorphism between the set of copulas equipped with the $*$-product and the set of Markov operators equipped with the composition. In proving a characterization of idempotent copulas, Darsow and Olsen (2010) introduced the notion of invariant sets, forming a σ-algebra, of the corresponding Markov operator. Recently (Sumetkijakan, 2017), the notion was extended to two associated σ-algebras and non-atomic copulas were defined and proved to be partially factorizable. The class of non-atomic copulas contains all non-atomic idempotent copulas and is a subclass of the singular copulas.

Simple examples of non-atomic copulas (D_{0} and D_{1} in Section 2.3) clearly shows that the associated σ-algebras σ_{C} and σ_{C}^{*} cannot identify the support of a non-atomic copula C. Nonetheless, we prove that for such a copula C, there correspond a left invertible copula L and a right invertible copula R such that $\sigma_{L}^{*}=\sigma_{C}^{*}, \sigma_{R}=\sigma_{C}$ and C can be partially factorized as the *-product of L and R, when viewed through their corresponding Markov operators. This sharpens and improves Theorem 4.6 in Sumetkijakan (2017). However, it does not necessarily mean that $C=L * R$. Even in the case that it does, the σ-algebras σ_{C} and σ_{C}^{*} cannot determine the support of C as there are many left invertible copulas L with the same σ-algebra σ_{L}^{*} and likewise for right invertible copulas R. Finally, although the pair (L, R) is far from unique, we prove that for a given non-atomic copula C, the factorizable copula $L * R$ sharing the same set of associated σ-algebras is in fact unique. As a consequence, a factorizability criterion is obtained.

This article is organized as follows. Section 2 provides essential backgrounds and terminologies required in this manuscript. Section 2.1 lays out basic knowledge in copulas and Markov operators while Section 2.2 lists some notions and

[^0]quoted results related to non-atomic copulas. Section 2.3 demonstrates how to compute the associated σ-algebras of a few motivated examples. Section 3 contains results concerning the associated σ-algebras of the product of certain non-atomic copulas, and summarizes in a sharper theorem on the partial factorizability of non-atomic Markov operators. Section 4 introduces factorizable copulas and shows that every non-atomic copula has a unique factorizable copula that shares the same set of associated σ-algebras. As a result, a factorizability test of non-atomic copulas is proposed. To make the key ideas more transparent, the final section gives a summary of the main results of the article.

2. Background knowledge

Throughout the manuscript, let $\mathscr{B} \equiv \mathscr{B}(\mathbb{I})$ and $\mathscr{B}\left(\mathbb{I}^{2}\right)$ denote the Borel σ-algebra on $\mathbb{I} \equiv[0,1]$ and \mathbb{T}^{2}, respectively, λ Lebesgue measure on \mathbb{I}, and $\mathbb{1}_{A}$ the indicator function of a Borel set $A \in \mathscr{B}$. Given a σ-algebra $\mathscr{S} \subseteq \mathscr{B}$, the class of integrable \mathscr{S}-measurable functions on \mathbb{I} is denoted by $L^{1}(\mathbb{I}, \mathscr{S}, \lambda)$, or $L^{1}(\mathbb{I}, \mathscr{S})$ for short, and $L^{1}(\mathbb{I}) \equiv L^{1}(\mathbb{I}, \mathscr{B})$.

2.1. Copulas and Markov operators

A function $C: \mathbb{I}^{2} \rightarrow \mathbb{I}$ is said to be a copula if it fulfills the following three conditions for all $u, v, u^{\prime}, v^{\prime} \in \mathbb{I}$: (i) $C(u, 0)=C(0, v)=0$, (ii) $C(u, 1)=u$ and $C(1, v)=v$, and (iii) $C\left(u^{\prime}, v^{\prime}\right)-C\left(u^{\prime}, v\right)-C\left(u, v^{\prime}\right)+C(u, v) \geq 0$ whenever $u \leq u^{\prime}$ and $v \leq v^{\prime}$. The most well-known examples of copulas are the independence copula $\Pi(u, v)=u v$ and the Fréchet-Hoeffding upper and lower bounds $M(u, v)=\min \{u, v\}$ and $W(u, v)=\max \{0, u+v-1\}$. Every copula C induces a unique doubly stochastic measure μ_{C} on $\left(\mathbb{I}^{2}, \mathscr{B}\left(\mathbb{I}^{2}\right)\right)$ defined by $\mu_{C}((a, b] \times(c, d])=C(b, d)-C(b, c)-C(a, d)+C(a, c)$. This measuretheoretic connection leads to a natural notion of the support of a copula C as the support of its induced measure μ_{C}. The transpose of a copula C is defined as $C^{t}(u, v)=C(v, u)$ for $u, v \in \mathbb{I}$, and C is said to be symmetric if $C^{t}=C$. The product of copulas C and D is defined by $(C * D)(x, y)=\int_{0}^{1} \partial_{2} C(x, t) \partial_{1} D(t, y) \mathrm{d} t$ for $x, y \in \mathbb{I}$. It can be proved that $C * D$ is indeed a copula and that the $*$-product is associative and distributive over convex combinations of copulas. Recall that the class of copulas is convex. A copula C is said to be left (right) invertible if there is a copula D in which $D * C=M(C * D=M)$. If C is both left and right invertible, we say that C is invertible. Denote by \mathcal{F} the set of Borel measure-preserving transformations of the interval \mathbb{I}, that is, Borel functions f satisfying $\lambda\left(f^{-1}(B)\right)=\lambda(B)$ for all $B \in \mathscr{B}$. Define the copula $C_{f g}$ induced by f and g in \mathcal{F} by

$$
C_{f g}(u, v)=\lambda\left(f^{-1}[0, u] \cap g^{-1}[0, v]\right) \quad \text { for } u, v \in \mathbb{I} .
$$

For any $f \in \mathcal{F}, C_{e f}$ is left invertible with $C_{e f}^{t}=C_{f e}$ as its left inverse where e denotes the identity map on \mathbb{I}. A function $f \in \mathcal{F}$ is said to possess an essential inverse $g \in \mathcal{F}$ if $g \circ f=e=f \circ g$ almost everywhere. Denote by $\mathcal{F}_{\text {inv }}$ the set of measure-preserving functions that possess essential inverses.

A linear operator $T: L^{1}(\mathbb{I}) \rightarrow L^{1}(\mathbb{I})$ is called a Markov operator if:
(M1) $f \geq 0$ implies $T f \geq 0$ for all $f \in L^{1}(\mathbb{I})$,
(M2) $T \mathbb{1}_{I I}=\mathbb{1}_{\mathbb{I}}$, and
(M3) $\int_{\mathbb{I}} T f \mathrm{~d} \lambda=\int_{\mathbb{I}} f \mathrm{~d} \lambda$ for all $f \in L^{1}(\mathbb{I})$.
By standard arguments (Olsen et al., 1996), any Markov operator T is a bounded operator on \mathbb{I} with $\|T\|=1$. Denote by \mathcal{C} the set of copulas and \mathcal{M} the set of Markov operators. Olsen et al. (1996) provided a one-to-one correspondence between the space \mathcal{C} equipped with the $*$-product and the space \mathcal{M} equipped with the composition operator \circ via the isomorphisms $C \mapsto T_{C}$ and $T \mapsto C_{T}$ defined by

$$
\left(T_{C} \psi\right)(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \int_{0}^{1} \partial_{2} C(x, t) \psi(t) \mathrm{d} t \quad \text { for } x \in \mathbb{I}
$$

and $C_{T}(u, v)=\int_{0}^{u}\left(T \mathbb{1}_{[0, v]}\right)(s) \mathrm{d} s$ for $u, v \in \mathbb{I}$. In fact, $T_{C * D}=T_{C} \circ T_{D}$. Some well-known examples of Markov operators induced by copulas are $T_{M} \psi(x)=\psi(x), T_{W} \psi(x)=\psi(1-x)$, and $T_{M+W}=\frac{1}{2}\left[T_{M}+T_{W}\right]$. To avoid double subscripting, the Markov operator induced by $C_{f g}$ will be written as $T_{f g}$. Denote by T^{*} the adjoint operator of T. Even though T^{*} is originally defined on $L^{\infty}(\mathbb{I})$, it has a unique extension to a Markov operator on $L^{1}(\mathbb{I})$, cf. Sumetkijakan (2017) and Printechapat (2017). It is evident from Olsen et al. (1996) that $T_{C}^{*}=T_{C^{t}}$, hence $T_{C}^{* *}=T_{C}$. See Durante and Sempi (2015) and Nelsen (2006) for detailed introduction to copulas.

2.2. Non-atomic copulas and associated σ-algebras

Let \mathscr{S} and \mathscr{R} be sub- σ-algebras of $\mathscr{B} . \mathscr{S}$ is said to be essentially equivalent to \mathscr{R} if for each $S \in \mathscr{S}$ there exists $R \in \mathscr{R}$ such that $\lambda(S \triangle R)=0$ where $S \triangle R=(S \backslash R) \cup(R \backslash S)$. It is said that \mathscr{S} and \mathscr{R} are essentially equivalent, written $\mathscr{S}=\mathscr{R}$ essentially, or $\mathscr{S} \approx \mathscr{R}$ for short, if \mathscr{S} is essentially equivalent to \mathscr{R} and vice versa. A set $S \in \mathscr{S}$ is called an atom in \mathscr{S} if (i) $\lambda(S)>0$ and (ii) for each $E \in \mathscr{S}$ either $\lambda(S \cap E)=\lambda(S)$ or $\lambda(S \cap E)=0$. If there is no atom in \mathscr{S}, then \mathscr{S} is called a non-atomic σ-algebra; otherwise it is called atomic. Recall (Sumetkijakan, 2017) that the associated σ-algebras of a copula C are defined as

$$
\sigma_{C}=\left\{S \in \mathscr{B} \mid \exists R \in \mathscr{B}, T_{C} \mathbb{1}_{S}=\mathbb{1}_{R}\right\} \text { and } \sigma_{C}^{*}=\left\{R \in \mathscr{B} \mid \exists S \in \mathscr{B}, T_{C} \mathbb{1}_{S}=\mathbb{1}_{R}\right\}
$$

https://daneshyari.com/en/article/9953311

Download Persian Version:

https://daneshyari.com/article/9953311

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: tanes.ptcp@gmail.com (T. Printechapat), songkiat.s@chula.ac.th (S. Sumetkijakan).

