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a b s t r a c t

Generalizing the notion of invariant sets by Darsow and Olsen, Sumetkijakan studied a
subclass of singular copulas, the so-called non-atomic copulas, defined via its associated
σ -algebras. It was shown that the Markov operator of every non-atomic copula is partially
factorizable, i.e. it is the composition of left and right invertible Markov operators on a
subspace of L1([0, 1]) depending on the copula. Here, we further investigate the associated
σ -algebras of the product of certain copulas and obtain (1) a sharper result on the partial
factorizability of non-atomic copulas and (2) the existence and uniqueness of a completely
factorizable copula that shares the same set of associated σ -algebras as that of a given
non-atomic copula.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

One of the most notable developments in the study of copulas is due to Darsow et al. (1992), where a binary operation
∗ on the set of bivariate copulas was introduced and thoroughly studied. It was shown by Olsen et al. (1996) that there is a
bijective isomorphism between the set of copulas equipped with the ∗-product and the set of Markov operators equipped
with the composition. In proving a characterization of idempotent copulas, Darsow and Olsen (2010) introduced the notion
of invariant sets, forming a σ -algebra, of the correspondingMarkov operator. Recently (Sumetkijakan, 2017), the notion was
extended to two associated σ -algebras and non-atomic copulas were defined and proved to be partially factorizable. The
class of non-atomic copulas contains all non-atomic idempotent copulas and is a subclass of the singular copulas.

Simple examples of non-atomic copulas (D0 and D1 in Section 2.3) clearly shows that the associated σ -algebras σC and
σ ∗

C cannot identify the support of a non-atomic copula C . Nonetheless, we prove that for such a copula C , there correspond
a left invertible copula L and a right invertible copula R such that σ ∗

L = σ ∗

C , σR = σC and C can be partially factorized as the
∗-product of L and R, when viewed through their correspondingMarkov operators. This sharpens and improves Theorem 4.6
in Sumetkijakan (2017). However, it does not necessarily mean that C = L ∗ R. Even in the case that it does, the σ -algebras
σC and σ ∗

C cannot determine the support of C as there are many left invertible copulas L with the same σ -algebra σ ∗

L and
likewise for right invertible copulas R. Finally, although the pair (L, R) is far fromunique,we prove that for a given non-atomic
copula C , the factorizable copula L ∗ R sharing the same set of associated σ -algebras is in fact unique. As a consequence, a
factorizability criterion is obtained.

This article is organized as follows. Section 2 provides essential backgrounds and terminologies required in this
manuscript. Section 2.1 lays out basic knowledge in copulas and Markov operators while Section 2.2 lists some notions and
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quoted results related to non-atomic copulas. Section 2.3 demonstrates how to compute the associated σ -algebras of a few
motivated examples. Section 3 contains results concerning the associated σ -algebras of the product of certain non-atomic
copulas, and summarizes in a sharper theorem on the partial factorizability of non-atomic Markov operators. Section 4
introduces factorizable copulas and shows that every non-atomic copula has a unique factorizable copula that shares the
same set of associated σ -algebras. As a result, a factorizability test of non-atomic copulas is proposed. To make the key ideas
more transparent, the final section gives a summary of the main results of the article.

2. Background knowledge

Throughout the manuscript, let B ≡ B(I) and B(I2) denote the Borel σ -algebra on I ≡ [0, 1] and I2, respectively, λ
Lebesgue measure on I, and 1A the indicator function of a Borel set A ∈ B. Given a σ -algebra S ⊆ B, the class of integrable
S -measurable functions on I is denoted by L1(I,S , λ), or L1(I,S ) for short, and L1(I) ≡ L1(I,B).

2.1. Copulas and Markov operators

A function C : I2 → I is said to be a copula if it fulfills the following three conditions for all u, v, u′, v′
∈ I:

(i) C(u, 0) = C(0, v) = 0, (ii) C(u, 1) = u and C(1, v) = v, and (iii) C(u′, v′)−C(u′, v)−C(u, v′)+C(u, v) ≥ 0whenever u ≤ u′

and v ≤ v′. Themostwell-knownexamples of copulas are the independence copulaΠ (u, v) = uv and the Fréchet–Hoeffding
upper and lower bounds M(u, v) = min {u, v} and W (u, v) = max {0, u + v − 1}. Every copula C induces a unique doubly
stochastic measure µC on (I2,B(I2)) defined by µC ((a, b] × (c, d]) = C(b, d) − C(b, c) − C(a, d) + C(a, c). This measure-
theoretic connection leads to a natural notion of the support of a copula C as the support of its induced measure µC . The
transpose of a copula C is defined as C t (u, v) = C(v, u) for u, v ∈ I, and C is said to be symmetric if C t

= C . The product
of copulas C and D is defined by (C ∗ D)(x, y) =

∫ 1
0 ∂2C(x, t) ∂1D(t, y) dt for x, y ∈ I. It can be proved that C ∗ D is indeed a

copula and that the ∗-product is associative and distributive over convex combinations of copulas. Recall that the class of
copulas is convex. A copula C is said to be left (right) invertible if there is a copula D in which D ∗ C = M (C ∗ D = M). If C is
both left and right invertible, we say that C is invertible. Denote by F the set of Borel measure-preserving transformations of
the interval I, that is, Borel functions f satisfying λ(f −1(B)) = λ(B) for all B ∈ B. Define the copula Cfg induced by f and g in
F by

Cfg (u, v) = λ
(
f −1

[0, u] ∩ g−1
[0, v]

)
for u, v ∈ I.

For any f ∈ F , Cef is left invertible with C t
ef = Cfe as its left inverse where e denotes the identity map on I. A function f ∈ F is

said to possess an essential inverse g ∈ F if g ◦ f = e = f ◦g almost everywhere. Denote byFinv the set ofmeasure-preserving
functions that possess essential inverses.

A linear operator T : L1(I) → L1(I) is called aMarkov operator if:

(M1) f ≥ 0 implies Tf ≥ 0 for all f ∈ L1(I),
(M2) T1I = 1I , and
(M3)

∫
I Tf dλ =

∫
I f dλ for all f ∈ L1(I).

By standard arguments (Olsen et al., 1996), any Markov operator T is a bounded operator on I with ∥T∥ = 1. Denote by C
the set of copulas and M the set of Markov operators. Olsen et al. (1996) provided a one-to-one correspondence between
the space C equipped with the ∗-product and the spaceM equipped with the composition operator ◦ via the isomorphisms
C ↦→ TC and T ↦→ CT defined by

(TCψ)(x) =
d
dx

∫ 1

0
∂2C(x, t)ψ(t) dt for x ∈ I

and CT (u, v) =
∫ u
0 (T1[0,v])(s) ds for u, v ∈ I. In fact, TC∗D = TC ◦TD. Somewell-known examples of Markov operators induced

by copulas are TMψ(x) = ψ(x), TWψ(x) = ψ(1 − x), and TM+W
2

=
1
2 [TM + TW ]. To avoid double subscripting, the Markov

operator induced by Cfg will be written as Tfg . Denote by T ∗ the adjoint operator of T . Even though T ∗ is originally defined on
L∞(I), it has a unique extension to aMarkov operator on L1(I), cf. Sumetkijakan (2017) and Printechapat (2017). It is evident
from Olsen et al. (1996) that T ∗

C = TC t , hence T ∗∗

C = TC . See Durante and Sempi (2015) and Nelsen (2006) for detailed
introduction to copulas.

2.2. Non-atomic copulas and associated σ -algebras

Let S and R be sub-σ -algebras of B. S is said to be essentially equivalent to R if for each S ∈ S there exists R ∈ R such
that λ(S△R) = 0 where S△R = (S \ R) ∪ (R \ S). It is said that S and R are essentially equivalent, written S = R essentially,
or S ≈ R for short, if S is essentially equivalent to R and vice versa. A set S ∈ S is called an atom in S if (i) λ(S) > 0 and
(ii) for each E ∈ S either λ(S ∩ E) = λ(S) or λ(S ∩ E) = 0. If there is no atom in S , then S is called a non-atomic σ -algebra;
otherwise it is called atomic. Recall (Sumetkijakan, 2017) that the associated σ -algebras of a copula C are defined as

σC = {S ∈ B | ∃R ∈ B, TC1S = 1R} and σ ∗

C = {R ∈ B | ∃S ∈ B, TC1S = 1R}.
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