ELSEVIER Contents lists available at ScienceDirect ## Statistics and Probability Letters journal homepage: www.elsevier.com/locate/stapro ## Factorizable non-atomic copulas Tanes Printechapat, Songkiat Sumetkijakan* #### ARTICLE INFO Article history: Received 22 June 2017 Received in revised form 30 July 2018 Accepted 5 August 2018 Available online 10 August 2018 MSC: 28A05 47B65 60A10 Keywords: Copula Non-atomic Associated sigma-algebra Factorizability Markov operator #### ABSTRACT Generalizing the notion of invariant sets by Darsow and Olsen, Sumetkijakan studied a subclass of singular copulas, the so-called non-atomic copulas, defined via its associated σ -algebras. It was shown that the Markov operator of every non-atomic copula is partially factorizable, i.e. it is the composition of left and right invertible Markov operators on a subspace of $L^1([0,1])$ depending on the copula. Here, we further investigate the associated σ -algebras of the product of certain copulas and obtain (1) a sharper result on the partial factorizability of non-atomic copulas and (2) the existence and uniqueness of a completely factorizable copula that shares the same set of associated σ -algebras as that of a given non-atomic copula. © 2018 Elsevier B.V. All rights reserved. #### 1. Introduction One of the most notable developments in the study of copulas is due to Darsow et al. (1992), where a binary operation * on the set of bivariate copulas was introduced and thoroughly studied. It was shown by Olsen et al. (1996) that there is a bijective isomorphism between the set of copulas equipped with the *-product and the set of Markov operators equipped with the composition. In proving a characterization of idempotent copulas, Darsow and Olsen (2010) introduced the notion of *invariant sets*, forming a σ -algebra, of the corresponding Markov operator. Recently (Sumetkijakan, 2017), the notion was extended to two associated σ -algebras and non-atomic copulas were defined and proved to be partially factorizable. The class of non-atomic copulas contains all non-atomic idempotent copulas and is a subclass of the singular copulas. Simple examples of non-atomic copulas (D_0 and D_1 in Section 2.3) clearly shows that the associated σ -algebras σ_C and σ_C^* cannot identify the support of a non-atomic copula C. Nonetheless, we prove that for such a copula C, there correspond a left invertible copula L and a right invertible copula L such that $\sigma_L^* = \sigma_C^*$, $\sigma_R = \sigma_C$ and C can be partially factorized as the *-product of L and R, when viewed through their corresponding Markov operators. This sharpens and improves Theorem 4.6 in Sumetkijakan (2017). However, it does not necessarily mean that C = L * R. Even in the case that it does, the σ -algebras σ_C and σ_C^* cannot determine the support of C as there are many left invertible copulas C with the same C-algebra C and likewise for right invertible copulas C. Finally, although the pair (C) is far from unique, we prove that for a given non-atomic copula C, the factorizable copula C sharing the same set of associated C-algebras is in fact unique. As a consequence, a factorizability criterion is obtained. This article is organized as follows. Section 2 provides essential backgrounds and terminologies required in this manuscript, Section 2.1 lays out basic knowledge in copulas and Markov operators while Section 2.2 lists some notions and E-mail addresses: tanes.ptcp@gmail.com (T. Printechapat), songkiat.s@chula.ac.th (S. Sumetkijakan). ^{*} Corresponding author. quoted results related to non-atomic copulas. Section 2.3 demonstrates how to compute the associated σ -algebras of a few motivated examples. Section 3 contains results concerning the associated σ -algebras of the product of certain non-atomic copulas, and summarizes in a sharper theorem on the partial factorizability of non-atomic Markov operators. Section 4 introduces factorizable copulas and shows that every non-atomic copula has a unique factorizable copula that shares the same set of associated σ -algebras. As a result, a factorizability test of non-atomic copulas is proposed. To make the key ideas more transparent, the final section gives a summary of the main results of the article. #### 2. Background knowledge Throughout the manuscript, let $\mathscr{B} \equiv \mathscr{B}(\mathbb{I})$ and $\mathscr{B}(\mathbb{I}^2)$ denote the Borel σ -algebra on $\mathbb{I} \equiv [0, 1]$ and \mathbb{I}^2 , respectively, λ Lebesgue measure on \mathbb{I} , and \mathbb{I}_A the indicator function of a Borel set $A \in \mathcal{B}$. Given a σ -algebra $\mathscr{I} \subseteq \mathscr{B}$, the class of integrable \mathscr{S} -measurable functions on \mathbb{I} is denoted by $L^1(\mathbb{I}, \mathscr{S}, \lambda)$, or $L^1(\mathbb{I}, \mathscr{S})$ for short, and $L^1(\mathbb{I}) \equiv L^1(\mathbb{I}, \mathscr{S})$. #### 2.1. Copulas and Markov operators A function $C: \mathbb{I}^2 \to \mathbb{I}$ is said to be a copula if it fulfills the following three conditions for all $u, v, u', v' \in \mathbb{I}$: (i) C(u, 0) = C(0, v) = 0, (ii) C(u, 1) = u and C(1, v) = v, and (iii) $C(u', v') - C(u', v) - C(u, v') + C(u, v) \ge 0$ whenever $u \le u'$ and v < v'. The most well-known examples of copulas are the independence copula $\Pi(u, v) = uv$ and the Fréchet-Hoeffding upper and lower bounds $M(u, v) = \min\{u, v\}$ and $W(u, v) = \max\{0, u + v - 1\}$. Every copula C induces a unique doubly stochastic measure μ_C on $(\mathbb{I}^2, \mathscr{B}(\mathbb{I}^2))$ defined by $\mu_C((a,b] \times (c,d]) = C(b,d) - C(b,c) - C(a,d) + C(a,c)$. This measuretheoretic connection leads to a natural notion of the *support* of a copula C as the support of its induced measure μ_C . The *transpose* of a copula C is defined as $C^t(u,v) = C(v,u)$ for $u,v \in \mathbb{I}$, and C is said to be *symmetric* if $C^t = C$. The product of copulas C and D is defined by $(C*D)(x,y) = \int_0^1 \partial_2 C(x,t) \partial_1 D(t,y) dt$ for $x,y \in \mathbb{I}$. It can be proved that C*D is indeed a copula and that the *-product is associative and distributive over convex combinations of copulas. Recall that the class of copulas is convex. A copula C is said to be *left* (right) invertible if there is a copula D in which D * C = M (C * D = M). If C is both left and right invertible, we say that C is invertible. Denote by \mathcal{F} the set of Borel measure-preserving transformations of the interval \mathbb{I} , that is, Borel functions f satisfying $\lambda(f^{-1}(B)) = \lambda(B)$ for all $B \in \mathcal{B}$. Define the copula C_{fg} induced by f and g in \mathcal{F} by $$C_{fg}(u, v) = \lambda (f^{-1}[0, u] \cap g^{-1}[0, v])$$ for $u, v \in \mathbb{I}$. For any $f \in \mathcal{F}$, C_{ef} is left invertible with $C_{ef}^t = C_{fe}$ as its left inverse where e denotes the identity map on \mathbb{I} . A function $f \in \mathcal{F}$ is said to possess an essential inverse $g \in \mathcal{F}$ if $g \circ f = e = f \circ g$ almost everywhere. Denote by \mathcal{F}_{inv} the set of measure-preserving functions that possess essential inverses. A linear operator $T: L^1(\mathbb{I}) \to L^1(\mathbb{I})$ is called a Markov operator if: - (M1) $f \ge 0$ implies $Tf \ge 0$ for all $f \in L^1(\mathbb{I})$, - (M2) $T\mathbb{1}_{\mathbb{I}} = \mathbb{1}_{\mathbb{I}}$, and (M3) $\int_{\mathbb{I}} Tf \ d\lambda = \int_{\mathbb{I}} f \ d\lambda$ for all $f \in L^1(\mathbb{I})$. By standard arguments (Olsen et al., 1996), any Markov operator T is a bounded operator on I with ||T|| = 1. Denote by C the set of copulas and \mathcal{M} the set of Markov operators, Olsen et al. (1996) provided a one-to-one correspondence between the space \mathcal{C} equipped with the *-product and the space \mathcal{M} equipped with the composition operator \circ via the isomorphisms $C \mapsto T_C$ and $T \mapsto C_T$ defined by $$(T_C\psi)(x) = \frac{\mathrm{d}}{\mathrm{d}x} \int_0^1 \partial_2 C(x,t) \psi(t) \,\mathrm{d}t \quad \text{for } x \in \mathbb{I}$$ and $C_T(u, v) = \int_0^u (T \mathbb{1}_{[0,v]})(s) ds$ for $u, v \in \mathbb{I}$. In fact, $T_{C*D} = T_C \circ T_D$. Some well-known examples of Markov operators induced by copulas are $T_M \psi(x) = \psi(x)$, $T_W \psi(x) = \psi(1-x)$, and $T_{\frac{M+W}{2}} = \frac{1}{2}[T_M + T_W]$. To avoid double subscripting, the Markov operator induced by C_{fg} will be written as T_{fg} . Denote by T^* the adjoint operator of T. Even though T^* is originally defined on $L^{\infty}(\mathbb{I})$, it has a unique extension to a Markov operator on $L^1(\mathbb{I})$, cf. Sumetkijakan (2017) and Printechapat (2017). It is evident from Olsen et al. (1996) that $T_C^* = T_{C^t}$, hence $T_C^{**} = T_C$. See Durante and Sempi (2015) and Nelsen (2006) for detailed introduction to copulas. #### 2.2. Non-atomic copulas and associated σ -algebras Let $\mathscr S$ and $\mathscr R$ be sub- σ -algebras of $\mathscr B$. $\mathscr S$ is said to be essentially equivalent to $\mathscr R$ if for each $S\in\mathscr S$ there exists $R\in\mathscr R$ such that $\lambda(S \triangle R) = 0$ where $S \triangle R = (S \setminus R) \cup (R \setminus S)$. It is said that $\mathscr S$ and $\mathscr R$ are essentially equivalent, written $\mathscr S = \mathscr R$ essentially, or $\mathscr{S} \approx \mathscr{R}$ for short, if \mathscr{S} is essentially equivalent to \mathscr{R} and vice versa. A set $S \in \mathscr{S}$ is called an *atom* in \mathscr{S} if (i) $\lambda(S) > 0$ and (ii) for each $E \in \mathcal{S}$ either $\lambda(S \cap E) = \lambda(S)$ or $\lambda(S \cap E) = 0$. If there is no atom in \mathcal{S} , then \mathcal{S} is called a *non-atomic* σ -algebra; otherwise it is called atomic. Recall (Sumetkijakan, 2017) that the associated σ -algebras of a copula C are defined as $$\sigma_C = \{S \in \mathcal{B} \mid \exists R \in \mathcal{B}, \ T_C \mathbb{1}_S = \mathbb{1}_R\} \text{ and } \sigma_C^* = \{R \in \mathcal{B} \mid \exists S \in \mathcal{B}, \ T_C \mathbb{1}_S = \mathbb{1}_R\}.$$ ### Download English Version: # https://daneshyari.com/en/article/9953311 Download Persian Version: https://daneshyari.com/article/9953311 <u>Daneshyari.com</u>