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a b s t r a c t

This article novelly proposes a robust model-free screening procedure, which performs
well for a variety of semivarying coefficient models. Under technical conditions, we show
that it possesses the ranking consistency property and the sure screening property. Com-
prehensive simulation studies are conducted to demonstrate that it exhibits more compet-
itive performance than existing screening methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction 1

With major advances of data acquisition and storage technologies, ultrahigh dimensionality has become a typical data 2

feature in statistical research fields, for example, gene expression microarray data, biomedical imaging data and so on. 3

Following the sparsity principle, recent years have witnessed a large variety of well-developed variable selection methods 4

including Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), adaptive Lasso (Zou, 2006) and Dantzig selector (Candes and Tao, 5

2007). Nevertheless, for ultrahigh-dimensional data, the dimensionality p diverges at an exponential rate with the sample 6

size n. The aforementioned variable selectionmethodsmaynot performwell in such scenario due to simultaneous challenges 7

of computational expediency, statistical accuracy, and algorithm stability (Fan et al., 2009). 8

Since the sure independence screening (SIS) was innovatively introduced by Fan and Lv (2008), SIS has been further 9

extended to many important model settings including generalized linear model (Fan and Song, 2010), additive model (Fan 10

et al., 2011), varying coefficient model (Fan et al., 2014; Liu et al., 2014a), and general nonparametric model (Feng et al., 11

2018). Moreover, as SIS is essentially equivalent to a Pearson correlation learning method, various extensions of correlation 12

measures have been proposed, such as robust rank correlation (Li et al., 2012a), distance correlation (Li et al., 2012b) and 13

conditional distance correlation (Wen et al., 2018). See Liu et al. (2015) for a comprehensive overview of independence 14

screening methods. 15

As we all know, incorporating exposure or confounding variables into feature screening procedures can improve 16

statistical accuracy and interpretability. In the present literatures, NIS (Fan et al., 2014) and CC-SIS (Liu et al., 2014a) 17

solve problems of variable screening very well under the varying coefficient model setting, but these two methods cannot 18

characterize the conditional nonlinear relationship between the response and predictors given the exposure variable. 19
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Moreover, CDC-SIS (Wen et al., 2018) can be adjusted for the confounding variable, but it may lose efficacy when there1

exists extreme values in the response.2

Based on the above consideration, our article aims to propose a new robust conditional nonparametric independence3

screening under a more general model framework. The newly proposed method is model-free, and it is based on the4

conditional correlation between each predictor and the indicator function of the response given some exposure variable.5

Without moment conditions on the response, we establish several desirable theoretical properties for it and design6

corresponding numerical studies.7

The rest of paper is organized as follows. In Section 2, we consider a new ranking index for feature screening under a8

general model framework. Section 3 provides important theoretical properties of the proposed method. In Section 4, we9

carry out simulation studies to evaluate the finite sample performance of our method. Technical proofs are given in the10

Appendix A.11

2. Robust nonparametric conditional independence screening12

2.1. Model settings and A new index13

Let Y be the response with support ΨY , U be some exposure variable with support U and X = (X1, . . . , Xp)⊤ be the14

p-dimensional predictor vector. We define F (y|X,U) to be the entire conditional distribution function of Y given X and U ,15

and assume F (y|X,U) depends on X and U only through the combinations β⊤(U)X, that is, F (y|X,U) = F (y|β⊤(U)X), where16

β(U) =
(
β1(U), . . . , βp(U)

)⊤ vary smoothly with U . Further define the active set as17

A = {k : F (y|X,U) depends on Xk for some y ∈ ΨY , given some U ∈ U} ,18

and the inactive set as I = {1, . . . , p} \ A. Accordingly, we refer to XA = (Xk, k ∈ A)⊤ as the active predictors and XI as19

the inactive ones. βA(U) and βI(U) can be similarly defined. Our primary goal is to select a submodel with a moderate scale20

which can almost contain all active predictors XA.21

To represent conveniently, we assume thatX is conditionally centralized givenU , namely X̃(U) = X−E(X|U). Tomeasure22

the conditional dependence between Y and X given U , we define23

Γ(y,U) = E
[̃
X(U)F (y|X,U)|U

]
.24

By simple derivations, it is obtained that Γ(y,U) = cov(̃X(U), I(Y ≤ y)|U). Following the idea of the marginal regression25

in Fan and Lv (2008), we consider the kth component of Γ(y,U), denoted by Γk(y,U), k = 1, . . . , p. To be specific,26

Γk(y,U) = cov(̃Xk(U), I(Y ≤ y)|U), where X̃k(U) = Xk − E(Xk|U). Then we define ωk(U) = E
[
Γ 2
k (Y ,U)|U

]
, and a robust27

ranking index for feature screening can be defined as28

ω∗

k = E
[

ωk(U)
var(Xk|U)

]
. (1)29

It can be easily seen that this new index ω∗

k in (1) is closely related to that of Fan et al. (2014). The significant difference is30

that ω∗

k involves the conditional covariance between Xk and the indicator function I(Y ≤ y) given U instead of cov(Xk, Y |U).31

Further, ourmetric is invariant undermonotone transformations of the response, hence it captures the conditional nonlinear32

relationship between Y and Xk given U . All this motivates us to consider the new index ω∗

k to measure the explanatory33

importance of each Xk for Y .34

2.2. A new nonparametric conditional independence screening procedure35

In this part, we propose a new nonparametric conditional independence screening procedure based on the ranking index36

ω∗

k . Firstly, to obtain a sample estimate of ω∗

k , the local constant estimator for those involved conditional expectations is37

uniformly adopted. Given a random sample
{
(Ui,X⊤

i , Yi)⊤, i = 1, . . . , n
}
from the population (U,X⊤, Y )⊤, the NWestimator38

of E [XkI(Y ≤ y)|U = u] is given by39

Ê [XkI(Y ≤ y)|U = u] =

n∑
i=1

Kh(Ui − u)XikI(Yi ≤ y)∑n
i=1 Kh(Ui − u)

, (2)40

where Kh(t) = h−1K (t/h), K (t) is a kernel function, and h is a bandwidth. Similar to (2), we can derive the kernel regression41

estimates Ê [I(Y ≤ y)|U], Ê(Xk|U) and Ê(X2
k |U). By plug-in method, the sample estimators of var(Xk|U) and Γk(Y ,U) can be42

expressed by v̂ar(Xk|U) = Ê(X2
k |U) −

[̂
E(Xk|U)

]2
and Γ̂k (̃Y ,U) = Ê

[
XkI(Y ≤ Ỹ )|U

]
− Ê(Xk|U )̂E

[
I(Y ≤ Ỹ )|U

]
, where Ỹ is an43

independent copy of Y . Then the sample estimate of ω∗

k is defined by44

ω̂∗

k =
1
n

n∑
i=1

ω̂k(Ui)
v̂ar(Xk|Ui)

=
1
n

n∑
i=1

∑n
j=1 Γ̂ 2

k (̃Yj,U)/n

v̂ar(Xk|Ui)
.45
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