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A B S T R A C T

The quest to sample and quantify a gold deposit depends on the ability to collect a representative sample and then
maintain the lot's constitution throughout all sampling steps. Differences in ore type, grade, gold size, distribution,
liberation and association are some variables which implies differences in procedures from one deposit to another.
In a low-grade nugget environment, the final analysis depends more on the chance occurrence of a particle in the
analytical aliquot rather than the actual concentration in the ore. A commonly used 30 g fire assay could result in
bad exploration decisions and create a highly skewed database. The concept of equant grains simplifies particle
size and distribution, and works with a uniform particle that represents the total content divided by the number of
grains necessary to attain a certain precision. In this paper, we test this hypothesis in which 20 and 10 equant
grains are used to simulate the grade values of six different analytical samples sizes, representing the smoky
quartz of Lamego Mine. The results confirm that a 30 g final aliquot does not represent the rock and a 500 or
1000 g analytical sample is required to be assayed.

1. Introduction

Lode-gold deposits are known for having a strongly skewed grade
distribution and a high nugget effect [1]. The nature of these deposits
reflects the unique settings for the origin of a rich fluid, precipitation or
remobilization [2]. Beyond the intrinsic complexity, gold sampling in-
troduces new sources of variance, which can create misunderstanding
and misinterpretation of the data [3].

By definition, a sample should represent the batch composition as
closely as possible, by maintaining a constant ratio of the particles of
interest in the parent throughout the entire sampling and sub-sampling
process [4]. This task becomes challenging when the content of the
mineral of interest drops under 1%, as is the case for gold.

A Poisson distribution is a limiting case for a binomial distribution,
where the constituent of interest resides in low-frequency grains [5]. Its
probability function can be described as:

Pn ¼ e�Z �Zn

n!
(1)

where Z is the average number of grains in a w-gram sample and Pn is the
probability that n grains will appear in the sample. For a lot of known

constitution, where in every 1000 g (w ¼ 1000 g) is one grain of interest,
Z ¼ 1. However, for the same lot, if w ¼ 250 g, Z ¼ 250=1000 ¼ 0:25.
The probability value is rooted in the ability to represent the lot in the
final stage of sampling. A shift from a Poisson to normal distribution is
possible by increasing the number of gold particles to at least six in the
sample. This is often implemented by using a larger analyte mass [3,6].

A larger analyte mass, collected using good sampling practices, im-
proves probabilities of occurrence of particles and reduces variability.
The limiting case is where everything is sampled and the unknown value
is defined, as shown in Fig. 1.

For each sample, not only does the mass have an impact on grade
variability, so does a series of other sampling errors, first discussed by
Pierre Gy [4]. It is advisable to understand the mitigation of these errors
and definition of optimum sample mass, which are beyond the scope of
this paper. Papers by Gy [4], Pitard [7] and François-Bongarçon [8], are
some literature in which the reader is referred for additional information.

Gold can be found in different sizes, forms and association through
nature. A specific and challenging type of gold deposit is with free nug-
getty gold. As noted by Pitard [7], any free gold deposit can be divided
into two categories: a low grade, also called background, where gold is
ultra-fine and sub-microscopic, and a high grade, associated with coarser
grains, which accounts for most of the metal content. On this setting,
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studies based on Gy's Sampling Theory will focus on this coarser fraction.
In addition, the controversy liberation factor is calculated disregarding
the fine fraction of gold [7].

1.1. Equant grains

The concept of ‘equant grains’ is broadly used to correlate skewed
data to nugget effects and sampling error [5,6,9]. Its use is effective to
provide guidelines for sampling, although several important assumptions
are made to simplify calculations. These assumption take part on inter-
pretation, therefore they will be thoroughly explained for the reader's
complete understanding.

The first assumption is that gold variability is random with no sys-
tematic variation across the ore body. This ideal is unreal to a certain
extent, since gold is concentrated in specific geological features (distinct
layers, hinge zones of folds, veins or faults). By dividing the deposit or
domaining it in similar styles or mineralizations, this risk could be
reduced [9].

Second, the sample is treated as a binary composition of two mineral,
gold and gangue. Gold can be found associated or in contact with many
minerals and rarely it would be in a setting with only one gangue min-
eral. Sulphides, silicates, micas and carbonates are a few common ones,
with a diverse spectrum of specific gravity and concentrations [10]. A
realistic assumption is to use a composition of gold and the most abun-
dant gangue mineral, quartz.

Third, gold particles are assumed to be of uniform mass, not neces-
sarily the same shape and gangue minerals have uniform mass, but not
the same as gold particles. This ground rule cascade through different
steps: definition of precision of the assays, directly associated with the
number of particles; sample weight requirement to guarantee the defined
number of particles; and estimation of the equant grain size [9].

The statistical analysis is simplified by a couple assumptions. If the
number of particles in the sample is greater than 103 (i.e. a lot of 1000
particles of quartz with 800 μm in diameter, yields approximately 0.7 g)
and deposit's grade is below 0.001, as usual for gold deposits, the
following equation based on a binomial distribution can be resumed to:

E�
C ¼ X�1=2

"
Z2
1�1=2α

2
�X�1=2 � Z1�1=2α

#
(2)

Where E�
C and Eþ

C are the negative and positive errors at a confidence

limit, �Z1�1=2α and þZ1�1=2α , which are read from a table of cumulative
normal distribution and X is the number of gold particles. Being the ex-
pected relative error `at a given percent confidence a function of only one
variable, the number of gold particles in a sample, independent of grade.
As the example given by Clifton [9], for 20 particles in the sample, with a
95% confidence level, the expected relative errors are:

E�
95 ¼ 20�1=2

�
1:921 � 20�1=2 � 1:960

� ¼ �0:34 (3)

Eþ
95 ¼ 20�1=2

�
1:921 � 20�1=2 þ 1:960

� ¼ 0:54 (4)

As noted, a higher precision will require more gold grains in the
sample. Based on the number of gold particles, the following step is to
determine the mass in which is more likely to contain it.

The number of gold particles per weight depends on the grade, grain
size and its size distribution. The later is a source of error, especially
because gold particles are not restricted to a narrow range of size. This
issue is diminished by assuming that gold particles have uniform mass
larger than the average mass per gold particle in the sample. By defini-
tion, average mass per gold particle means the total mass of gold in the
sample divided by the number of gold particles on it [9].

On Fig. 2, the relationship between gold grain size and distribution is
highlighted using an example of four different hypothetical deposits
yielding the same grade.

After all simplifications and assumptions, the equant grain size will be
chosen from the total mass of gold in the sample, a direct correlation
between sample mass and average grade, and the number of gold parti-
cles necessary for the required precision. For example, a sample with one
kilogram and gold grade of 7.18 g/t, has a total gold mass of 0.00718
grams. This gold mass can be represented by a diverse range of particle
sizes related to the required precision (Table 1).

The equant grain approach, assuming that gold is in a unique size as
large or larger than the coarsest, and the sum of all particles yields the
total gold content in the sample, can be used as a safe guide to obtain
adequate sample size and a representative sample [9]. Thus, it allows one
to test the effects of nuggets in final aliquots of diverse masses.

The foundation of the equant grains approach relies on a binomial
distribution, where the number of gold particles is more than 5 (Z ¼ 5).
Since this fact is directly associated with sample mass, it cannot represent
low mass samples where there is not enough particles, especially low-
grade deposits with coarse grains. However, based on a deposit's his-
torical data, average grade and particle characteristics, one could

Font – modified Pitard [3]

Fig. 1. Grade distribution and most probable grade based on analytical mass.
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