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A B S T R A C T

Non-unitized loading cosine similarity A recursive optimization method that updates fewer parameters of the
manipulated trajectory determined by principal time-segmented variables (PTVs) for batch processes with multi-
stage characteristics is presented. First, the correlation analysis between time-segmented variables and the
controlled product quality index variable is carried out in a non-unitized orthogonal latent variable space. Next,
the parameters of the manipulated trajectory and the PTVs of each stage are determined according to the cor-
relation and trend characteristics of the trajectory. Then, the parameters of the manipulated trajectory are
recursively updated according to the cosine similarity between PTVs and the controlled quality index variable.
Finally, performance of the proposed optimization technique is evaluated using the Bisphenol A (BPA) crystal-
lization process to verify the effectiveness and advantages of the methods.

1. Introduction

The batch process is well adapted to rapidly evolving market condi-
tions given its flexible production pattern [1], which renders it suitable
for wide applications in food, medicine, chemistry, and other fields [2].
However, batch processes are more complex compared to continuous
processes owing to their lack of steady operating states and significant
dynamic and non-linear characteristics [3,4]. To control product quality,
improve efficiency, and meet the environmental criteria of batch pro-
cesses, leveraging production data to optimize the manipulated trajec-
tory is a worthwhile avenue for exploration [5,6].

Considering the influence of myriad ambiguous process factors and
mismatches between established models and actual processes, it is
necessary to improve the optimization performance from batch to batch
[7]. Based on mechanism modeling, Mandur et al. [8,9] updated mech-
anism model parameters by using state measurements to ensure that the
gradient of the model matches the actual gradient. Further, considering
the difficulty and sensitivity of noise when updating all model parame-
ters, Hille et al. [10] proposed that a particular subset of parameters be
updated based on the parametric sensitivity of the model output and of
the cost and constraint gradients. In general, the establishment of a
mechanismmodel requires a certain degree of expertise, and the complex
characteristics of batch processes make it expensive to devise an accurate
mechanism model. By contrast, the empirical model is somewhat easier

to establish and is more suitable for batch processes [11].
For a gradient-based optimization strategy, Camacho et al. [12]

proposed a self-tuning extremum unfolded partial least squares (u-PLS)
model to revise the manipulated variable trajectory, after which they
[13] introduced smoothing techniques to accelerate the optimization
procedure. Based on the quadratic performance index of the optimization
strategy, Flores-Cerrillo et al. [14] established a regression relationship
between the latent variables and index variables using PLS and then
adjusted the latent variables to make the end-time production quality
approach the desired value. Duran-Villalobos et al. [15] extended the
approach described in Ref. [14] by creating a cost function between the
actual process variables and end-time production quality. Li et al. [16]
proposed extending the input matrix with outputs of hidden nodes in a
radial basis function (RBF) network to establish a nonlinear PLSmodel, in
which the manipulated trajectory is updated from batch to batch.

In the aforementioned approaches, the manipulated trajectory is
discretized using a piecewise constant method; a set of constant param-
eters can be used to describe the trajectory, after which all parameters are
updated to achieve the desired optimization performance. For long-
period batch processes, a large set of parameters may increase the
computational burden and render the optimization algorithm unstable
(e.g., falling into a local optimum or ill-conditioned matrix obtained
during the calculation) [17]. To deal with this problem, a new parame-
terization method describing the manipulated trajectory is presented for
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multi-stage batch processes. Then, the parameters of the manipulated
trajectory are optimized based on PTVs from batch to batch. These PTVs
are selected from time-segmented variables (each segment of the dis-
cretized measurement variable trajectory is defined as a time-segmented
variable) according to the rounding function that divides the degree of
correlation. The correlation between variables is calculated using
non-unitized loading cosine similarity. Considering the influence of data
quality on optimization performance, the incremental of the controlled
quality index variable between batches is introduced into the optimiza-
tion algorithm. Finally, the proposed method is applied to maximize the
feedstock conversion of the BPA crystallization process.

The remainder of this paper is structured as follows. Section 2 in-
troduces the optimization methodology used in this study. The parame-
terization method of the manipulated trajectory based on the correlation
between time-segmented variables and the controlled product quality
index variable is described in Subsection 2.1. Subsection 2.2 outlines a
non-unitized loading cosine similarity method for correlation calcula-
tion. Subsection 2.3 presents an optimization strategy in which fewer
manipulated trajectory parameters are adjusted. The effectiveness of the
proposed method is demonstrated via a case simulation of the BPA
crystallization process in Section 3. Finally, Section 4 provides closing
remarks.

2. Methodology

2.1. Parameterization of manipulated trajectory

To describe and adjust the manipulated trajectory more simply, the
trajectory parameterization depends on two factors: trajectory trend and
the correlation between each time-segmented variable and controlled
quality index variable. Taking Fig. 1 as an example, Fig. 1(a) shows a
discretized temperature-manipulated trajectory with two stages using
piecewise constant parameterization; Fig. 1(b) shows a discretized
measurement variable trajectory. The correlation between time-
segmented variables ½x1; x2;⋯; x15� 2 Rk�15 from the discretized mea-
surement variable trajectory and controlled quality index variable Y ¼
½y1; y2;⋯; yk�T 2 Rk�1 is calculated as shown in Fig. 1(c), where k is the

number of batches. Then we can obtain a new parametric representation
of the temperature-manipulated trajectory, displayed in Fig. 1(d). The
corresponding mathematical description of trajectory parameterization
is as follows:

sðtÞ ¼
8<
:

fs1; s2; s3; s10; s11; s12g
s15 � s13

2
ðt � 13Þ þ s13

0 � t < 12

12 � t < 15
(1)

where s1; s2;⋯; s15 are constant parameters from the discretized
temperature-manipulated trajectory, and t is the sampling time.

Then, the trajectory can be described by:

s ¼ ½s1; s2; s3; s10; s11; s12; s13; s15� (2)

According to changes in the correlation between each time-
segmented variable and controlled quality index variable, the length of
the parameterized interval is different. The dividing criteria of parame-
terized intervals in every stage is given by:

fN � ϕðjcosðx;YÞjÞ < fNþ1

s:t:
Δt ¼ 1; x 2 A½fN ;fNþ1Þ

(3)

where x 2 Rk�1 represents any time-segmented variable, ϕð�Þ is a custom
rounding function to divide the degree of relevance, cosð�Þ is cosine
similarity, fN and fNþ1 are the range of ϕð�Þ, and A½fN ;fNþ1Þ represents a set
of time-segmented variables with size ϕð�Þ between fN and fNþ1. To
ensure that the time series of all time-segmented variables in A½fN ;fNþ1Þ are
continuous, the time series difference of the adjacent time-segmented
variable in A½fN ;fNþ1Þ must be 1; that is, Δt ¼ 1. Then the set A½fN ;fNþ1Þ
with the largest number of time-segmented variables is divided into an
interval. To select parameters describing this interval, the following
process applies: (1) if the trajectory of the interval is a straight line, a
parameter may be used to describe the interval, such as s3 in Fig. 1(c); the
parameter can also be obtained by using an appropriate fitting function
to fit multiple data points in the interval. (2) If the trajectory of the in-
terval is an oblique line, the parameters at the head and end can be used
to describe the interval, as shown in s13 and s15 in Fig. 1(c); similarly, the
parameter can be obtained by using an appropriate fitting function to fit
multiple data points in the interval.

The time-segmented variables corresponding to these selected pa-
rameters are PTVs used to update the parameters of the manipulated
trajectory in the optimization algorithm. The process dynamics are
complex in the transitional parts of this stage. Therefore, the piecewise
constant parameterization method is still used to describe that part of the
trajectory, and each time-segmented variable is considered a PTV. In the
above case, the selected PTVs are marked with red in Fig. 1(e).

2.2. Non-unitized loading cosine similarity

To analyze the correlation between the time-segmented and
controlled quality index variable, the cosine similarity is calculated by
Eq. (4).

cosðY ; xÞ ¼ YTx
kYkkxk (4)

Information redundancy exists in the original high-dimension data x
and Y [18]. To solve this problem and reduce information loss during
data processing, a non-unitized loading cosine similarity is presented to
calculate the correlation.

Define X ¼ ½x1; x2;⋯; xc� 2 Rk�c as a matrix containing c time-
segmented variables. Principal component analysis (PCA) is inge-
niously adopted to analyze the combined matrixW ¼ ½X Y � 2 Rk�ðcþ1Þ:
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Fig. 1. Manipulated trajectory parameterization.
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