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In the calculation of water application in mobile sprinkler machines, various interpolation

and fitting methods have been applied to describe the radial water distribution pattern of

sprinklers. However, few studies have been carried out related to the accuracy and

applicability of these methods. In this study, the radial water distribution curves were

obtained by adopting cubic spline interpolation, Lagrange interpolation, least-squares

polynomial fitting, and simplified geometric curves, respectively. The mobile spraying

water distribution and spray uniformity coefficients were calculated based on these radial

water distribution curves. The results indicated that the cubic spline curve and the least-

squares polynomial fitting reflected the water distribution characteristics accurately,

with the maximum deviation between the calculated values and the measured values

being less than 10%. The existence of Runge's phenomenon in the Lagrange interpolation

method led to sharp oscillations at both ends of the radial water distribution curve,

resulting in large inconsistencies between the calculated value and the measured value of

irrigation depth. The curves of the simplified geometric method were too simple to accu-

rately characterise water application. Although the cubic spline interpolation showed high

calculation accuracy, the large number of interpolation polynomial coefficients hinder its

practical application. The least-squares based polynomial fitting curve showed both suf-

ficient calculation accuracy and simple expression form, while the number of polynomial

coefficients is only one more than the degree of polynomial. The recommended degree of

polynomial fitting was six in this study.

© 2018 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Irrigation uniformity is an important indicator in quantifying

irrigation performance (Burt et al., 1997). Hard hose travellers

produce a spray with a low level of uniformity when

compared to other sprinkler systems (Keller & Bliesner, 1990).

Wigginton and Raine (2001) tested and determined the dis-

tribution uniformity coefficient of hard hose travellers inMary

Valley. The test results of distribution uniformity coefficient
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ranged from 1% to 88%, with an average value of 62%. There

are generally two methods to improve upon the spray uni-

formity. One method is the investigation of the system

configuration and operation parameters' influence on water

distribution through a field test, as in the work performed by

Hashim et al. (2016) and Jangra (2017). An advantage of a field

test is the exact reproduction of field water distribution, while

a disadvantage is that this method is resource intensive with

regards to labour and equipment. Another method to improve

upon spray uniformity is to use irrigation calculation soft-

ware, such as DEPIVOT (Valı́n et al., 2012), SIRIAS (Carri�on,

Tarjuelo, & Montero, 2001), TRAVGUN (Smith, Gillies, Newell,

& Foley, 2008) and ENROLADOR (Rolim & Teixeira, 2016), to

simulate the spray distribution in the field. The common

feature of the above software is that the calculation of the field

water distribution is based on the radial water distribution

curve of a fixed sprinkler. The radial water distribution curve,

however, is not generally provided in the manufacturer's
literature, which requires the researchers to establish some

data throughmeasurement. For instance, the software SIRIAS

calls for the test data of Tarjuelo, G�omez, Pardo (1992),

Tarjuelo et al. (1999). During the sprinkler radial leg test,

catch cans are generally used to collect the applied water (Faci

et al., 2001), however the number of catch cans is limited,

which requires mathematical methods to obtain the esti-

mated applied water between the catch can locations.

Richards andWeatherhead (1993) adopted a cubic polynomial

to predict the spray intensity of each point along the spray in

the radial direction. Smith et al. (2008) adopted cubic spline

interpolation to describe the radial water distribution of a

spray nozzle and applied this method to the sprinkler calcu-

lation software TRAVGUN (Smith, Foley, & Newell, 2003). It

was found that the distribution of the radial spray pattern

followed a consistent shape (Prado et al., 2012; Rolim &

Pereira, 2005, pp. 166e171), and because of this, some re-

searchers described the radial water distribution of sprinklers

as geometric shapes to simplify the calculation process. For

instance, Rolim and Pereira (2005, pp. 166e171) used a trian-

gular shape to simulate the radial water distribution of

sprinklers. Prado et al. (2012) described the radial water dis-

tribution of sprinklers with triangular, elliptical and rectan-

gular shapes, respectively, and the operating parameters of

hard hose travellers were further discussed based on the three

radial water application patterns. Kincaid (2005) also divided

the water distribution of sprinklers into triangular, trape-

zoidal, and rectangular distributions, according to the ratio

between maximum precipitation depth and average precipi-

tation depth. The calculation produced by the DEPIVOT soft-

ware was based on an assumption of an elliptical pattern of

radial water distribution (Valı́n et al., 2012). It is apparent from

the above research that a variety of methods, such as inter-

polation curves, polynomial fitting, and geometric shapes,

have been adopted to describe the radial application patterns

of sprinklers. These different forms of radial water distribu-

tion patterns have been further used by the calculation

models to assess the water distribution and spray uniformity

of the entire spray area. However, the calculated results of

different radial water distribution curves would inevitably be

different and no effort has been made to verify the rationality

of each expression form and the accuracy of the

corresponding calculated results. In this study, we would like

to select an accurate and convenient radial water distribution

expression from a variety of methods. The accuracy of model

prediction under different radial water distribution curves

was compared and quantitatively analysed by means of

model calculations and actual measurements. The conve-

nience of application was then discussed for the methods

with high accuracy. Finally, the recommended curve formwas

used to improve the model calculation accuracy of mobile

sprinkler water distribution.

2. Materials and methods

2.1. Interpolation and fitting methods

It is assumed that the actual radial water distributions of

sprinklers satisfy the function f(x) and the expression of the

function is unknown. A set of points that satisfied the function

f(x) was obtained through the radial water distribution test. It

is desirable to obtain a smooth curve g(x) from the obtained set

of points that is nearest the original curve function f(x). The

most commonly used methods to obtain g(x) are the interpo-

lation curve method and the fitting curve method. The two

methods differ in that the interpolation curve method re-

quires that the resulting curve pass through each given point,

while the fitting curve method requires that the resulting

curve be close to each given point, but not necessarily pass

through each point.

2.1.1. Cubic spline interpolation
The cubic spline interpolation is composed of a set of cubic

polynomials. The interpolation interval is divided into small

intervals by node xi (a ¼ x0 < x1 < x2 < … < xn ¼ b). There is a

cubic polynomial function in each interval [xi-1, xi]. The second

order of each function is continuous, so that the cubic spline

line curve is smooth and each segment connects with each

other. Smith et al. (2008) showed that the radial water distri-

bution of a sprinkler nozzle could be described by a cubic

spline curve using Eq. (1). When the fitting coefficients are

known, the expression of cubic spline of this segment is

calculated.
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For each segment of the cubic spline interpolation curve,

P(x) is the average application intensity at a distance of x from

the sprinkler, mm h�1, x1<x < x2; P1 and P2 are the average

application intensities at distances x1 (point 1) and x2 (point 2)

from the sprinkler, mm h�1, points 1 and 2 move for each

segment; dr is the distance between point 1 and point 2, m; w1

andw2 are the fitting coefficients; q is the rotating sector angle

of the sprinkler, in degrees.

2.1.2. Lagrange interpolation
Since a set of points that satisfies f(x) is available, we assume

that the number of points is nþ1 and construct a n-degree
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