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a b s t r a c t

This paper considers dynamic output-feedback control for Markovian jump systems with
input mode-dependent interval time delay and quantized measurements. The transitions
of the considered system and the desired output feedback controllers are considered to
be asynchronous. The transition probabilities of output feedback controllers are allowed
to be known, uncertain, and unknown. The main purpose of this paper is to design an
asynchronous output feedback controller for Markov jump systems so that the closed-loop
system is stochastically stable and achieves strict (Q , S, R) − α dissipativity. A sufficient
condition is developed using Lyapunov functional approach. The controller gains are
derived by solving a set of linear matrix inequalities. A numerical example is provided to
demonstrate the effectiveness of the developed techniques.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Markov jump systems (MJSs) is a class of hybrid systems subjected to random switching structure. MJSs have received
considerable attention in the past decades because such systems are widely used tomodel various kinds of practical systems
subject to random abrupt variations in their parameters and structures [1–4]. Many researchers focus their effort on some
fundamental issues of MJSs, and many significant results have been developed, such as stability analysis [5], controller
synthesis [6–9], filter design [10,11], among many other issues.

It should be noted that many of the existing works for controller design problems for MJSs consider state feedback
controls [5–9]which require all state variables to be available. However, output feedback back controls aremore realistic and
hence preferable for many control systems. One of the output feedback controls is the dynamic output feedback which has
been studied in numerous works and implemented in many practical applications. The dynamic output feedback control for
MJSs has also been investigated by many researchers. The output feedback controls for Markov jump systems in continuous
time are studied in [12] and [13]. Dynamic output feedback control for discrete-time has been addressed in [14] and [15].
However, in [12–15], the system and output feedback controller of Markov jump systems are based on the assumption that
the mode information of plant is fully accessible to controller all the time to ensure the control mode run synchronously
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with system modes. However, in real situations, such assumption is difficult to satisfy [16]. For example, in networked
control systems, the mode information of plant cannot be completely accessible, because communication delays and the
loss of data packet inevitably occur, which leads to the asynchronization phenomenon between controllermodes and system
modes [17–19]. In addition, considering a class of discrete-timeMarkov LPV systems in [20], the randomly occurring channel
noises are considered in the side of measurement output for the first time, and the HMM-based approach is employed to
effectively reflect the incomplete accessibility of systemmodes for the designed filters. In order to overcome such difficulty,
an asynchronous output feedback controller where the controller and system do not need to share the same mode jumps
is deserved to be investigated. Furthermore, the transition probabilities (TPs) in aforementioned works are presumed to
be known. This assumption, however, restricts its wide application in engineering. Because of measurement condition and
cost, it is not easy to get all transition probabilities precisely [21–24]. The uncertain transition probabilities have hence
been proposed in [25,26] where the bounds of uncertain transition probabilities are supposed to be exactly known [27].
To accommodate the real situation, partly known transition probabilities have been discussed in [28,29]. In addition, the
uncertain case with known bounds is handled as completely unknown in [28,29]. Once uncertain TPs have variation [25]
and are completely unknown [28,29], no valid measurement has been supplied in existing results. A unified framework of
transition probabilities called general transition probabilities where the transition probabilities are allowed to be known,
uncertain, and unknown has been studied in [30].

On the other hand, quantization problems in Markovian jump systems have been investigated in recent years due to the
limited transmission capacity of the network [31,32]. In the network environment, the outputs of the system are always
required to be quantized before transmission. In other words, a continuous real-valued system signal is mapped into a
piecewise constant one taking a finite set of values, which are employed when the observation and control signals are sent
by constrained communication channels.

On another research frontier, dissipative theory, which was first proposed byWillems [33,34], has also been successfully
applied in various kinds of fields such as system, circuit, network, and control theory [35]. The theory of dissipative systems
includes some basic tools including passive theorem, bounded real lemma, Kalman–Yakubovich–Popov (KYP) lemma, and
circle criterion. Many results have been presented recently [36,37]. In addition, the time delay always occurs in many
practical systems because of the pneumatic and hydraulic characteristics of the actuators or the transmission lag of the
measurement data but very few important results are reported on output feedback dissipative control with input delay. A
fuzzy dynamic output-feedback (Q , S, R)-α- dissipative controller for T–S fuzzy systems with input time-varying delay and
output constraints has been investigated in [38]. However, the quantized effect is not taken into consideration in [38]. To the
best of authors’ knowledge, no result has been studied so far on asynchronous dynamic output feedback dissipative control
for Markov jump linear systems with input time delay and quantized measurements, which is the motivation of this paper.

With above discussions, the aim of this paper is to solve problem of asynchronous dynamic output feedback dissipative
control for Markovian jump systems with input time delay and quantized measurements. The time delay is supposed to be
mode-dependent and belongs to a given interval. The transition probabilities of output feedback controllers are allowed to
be known, uncertain, and unknown. Based on Lyapunov–Kravoskii theory, a sufficient condition is established under which
the closed-loop system is stochastically stable and achieves the strict (Q , S, R) − α dissipativity. A set of delay-dependent
condition for the desired (Q , S, R) − α dissipative controller is developed in terms of LMIs. Finally, a numerical example
confirms the effectiveness of the proposed method. The main contributions and novelty of this paper are summarized
as follows: (1) The dynamic output-feedback dissipative control design scheme for Markovian jump systems with input
mode-dependent interval time delay and quantized measurement is dealt with for the first time; (2) The transitions of
the considered system and the desired output feedback controllers are considered to be asynchronous; (3) The transition
probabilities of output feedback controllers are allowed to be known, uncertain, and unknown; (4) The proposed controller
not only includes existingH∞ and passivity control as special cases, but also can provide design flexibility through the proper
tuning of Q , S, and Rmatrices to satisfy the guaranteed performance and constraints.

Notations. Throughout this paper, I is the identity matrix with appropriate dimensions; Rn denotes the n-dimensional
Euclidean space; Rm×n represents the set of allm × n real matrices, and ∗ represents the elements below the main diagonal
of a symmetric blockmatrix. For symmetric matrices A and B, the notation A > B (respectively, A ≥ B) means that thematrix
A − −B is positive definite (respectively, nonnegative), and λM (·) and diag{. . .} denotes the block diagonal matrix.

2. Problem statement

Consider the following Markovian jump system

ẋ(t) = A(r(t))x(t) + B(r(t))u(t − h(r(t), t)) + Bw(r(t))w(t),
z(t) = C(r(t))x(t) + D(r(t))u(t − h(r(t), t)),
y(t) = F (r(t))x(t) (2.1)

where x(t) ∈ Rn is the state vector and u(t) ∈ Rm is the output vector; z(t) ∈ Rp denotes the controlled output vector;
w(t) ∈ Rq is the deterministic disturbance which belongs to L2[0, ∞); {r(t), t ≥ 0} represents a right-continuous Markov
chain defined on a probability space taking values in a finite set S1 = {1, 2, . . . ,N1}; A(r(t)), B(r(t)), Bw(r(t)), C(r(t)), D(r(t))
and F (r(t)) are known real constant matrices with appropriate dimensions for each r(t) ∈ S1. For notation simplicity, when
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