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a b s t r a c t

Structural dynamic displacement is one of the most important measurands that describe the dynamic
characteristics of a structure. However, accurate measurement of dynamic displacements of a civil infras-
tructure is still a challenging task. To solve the difficulties and drawbacks of direct dynamic displacement
measurement, the approach of multi-rate Kalman filtering for the data fusion of displacement and accel-
eration measurement was developed. Recently, an improved technique for dynamic displacement esti-
mation by fusing biased high-sampling rate acceleration and low-sampling rate displacement
measurements has been proposed. However, this technique can only take constant acceleration bias into
account. In this paper, based on the algorithm of Kalman filter with unknown input recently developed by
the authors, dynamic displacement is on line estimated based on multi-rate data fusion of high-sampling
rate acceleration with time-varying bias and low-sampling rate displacement measurements. The time
history of time-varying acceleration bias is treated as ‘‘unknown input” in the algorithm of Kalman filter
with unknown input to overcome the limitations of the previous technique. Some numerical examples
with linear or polynomial acceleration bias are used to demonstrate the effectiveness of the proposed
approach for on line estimation of structural dynamic displacement.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The effective measurement of dynamic displacement is crucial
not only to ensure the overall safety of engineering structures,
but also to predict the abnormal state of structures [1–4]. Indeed,
a variety of modern design codes adopt limit displacement levels
under given loadings to assure structural safety [5]. Displacement,
or deformation information is particularly important when non-
linear behavior and permanent deformations occur [6,7]. Measure-
ment of dynamic displacement is also useful in structural control
[8,9] and system identification applications [10,11]. In addition,
displacement measurements have been used for bridge rating
[12], seismic risk assessment [13], structural health monitoring
of structures [14,15], etc.

However, displacement response measurement of existing
structures is still difficult and cumbersome in practice. Since dis-
placement is a relative physical quantity, it requires a reference.
Thus, contact displacement sensors such as linear variable differ-
ential transformer (LVDT), which is one of the most common
devices used to measure displacement in field, requires a direct

contact of one end of LVDT with a target structure and the other
end with a fixed scaffold or a firm support. This contact nature of
LVDT makes its installation difficult, and the measurement by
LVDT can be easily contaminated by support vibrations [16]. To
resolve the limitation, some noncontact displacement sensors such
as GPS, vision-based sensor, radar-based sensor and LiDAR (light
detection and ranging) have been developed [17–23]. However,
they still suffer from some problems such as high equipment cost,
low sampling rate, and limited applicability.

There has been a strong preference of the use of measured
acceleration to retrieve displacement, since accelerometers are
commonly used in dynamic testing of structures due to their
installation convenience, low cost and relatively high accuracy
with low measurement noise [24]. The displacement estimation
using acceleration measurements is based on the double integra-
tion of accelerations. However, the double integration involves
intrinsic errors due to measurement noise and imperfect informa-
tion in measured discrete acceleration signals, typically resulting in
the low frequency drift in the estimated displacement [25]. Tradi-
tionally, this type of error is corrected by baseline correction or low
and high pass filtering techniques [26,27]. Baseline correction is a
least-square curve fitting technique in the time domain and filter-
ing is a common noise removal technique in the frequency domain.
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However, these techniques are not suitable for real-time estima-
tion because the necessary post-processing can be performed only
after the completion of data acquisition. There are ongoing efforts
to address this non-unique nature of the displacement estimation
by adopting displacement reconstruction techniques based on
finite and infinite impulse filters [28,29] or frequency domain inte-
gration. However, all these techniques cannot estimate displace-
ment properly when the mean value of the acceleration
measurement is non-zero, or there are nonlinear or pseudo static
components in displacement.

Alternatively, Kalman filters have been employed to obtain the
optimal estimate of dynamic displacement by explicitly taking into
account measurement errors when acceleration and intermittent
displacement measurements are combined [1]. The estimation
accuracy can be further improved by adopting fixed interval
smoothing [24], but the employment of the fixed interval smooth-
ing prevents real-time estimation of displacement because the
smoothing techniques require more computational time and
resources and hamper real-time estimation.

Recently, Kim et al. [30] presented a new dynamic displacement
estimation technique based on two-stage Kalman estimator to fur-
ther improve the accuracy of dynamic displacement. By adopting
two-stage Kalman estimator, the proposed technique improves
the convergence rate of Kalman gain and minimizes the level of
discontinuities without Kalman filter smoothing. The performance
of the proposed technique is verified by numerical simulations and
experiments. However, it only considers acceleration bias with
constant values. But some researchers have come up with that
the measured acceleration has a linear or polynomial bias [31–33].

In this paper, dynamic displacement is estimated based on
multi-rate Kalman filter with unknown input (KF-UI) using data
fusion of partial acceleration and displacement measurements,
which has recently been proposed by the authors [34]. In the pro-
posed approach, the acceleration bias is regarded as an ‘‘unknown
input” and multi-rate data fusion KF-UI algorithm is adopted to
estimate the dynamic displacement. The proposed approach cir-
cumvented the above limitation, that is, when the acceleration bias
is not a constant value, it also can estimate the dynamics displace-
ment. Such algorithm is not available in the literature. Some
numerical examples are used to demonstrate the effectiveness of
the proposed approach.

The rest of the paper is organized as follows. In Section 2, the
data fusion based Kalman filter with unknown input (KF-UI) algo-
rithm recently developed by the authors [34] is briefly reviewed; In
Section 3, the approach for real-time estimation of dynamic dis-
placement using data fusion based multi-rate KF-UI is proposed.
In Section 4, some numerical examples are used to validate the
performances of the proposed approach. Finally, some concluding
remarks and further necessary research works are presented in
the conclusion section.

2. Brief review of the data fusion based KF-UI

When the external inputs to a linear structural system are
unknown, the state equation of the system in the discrete form
can be expressed as

Xkþ1 ¼ AkXk þ Gkf
u
k þwk ð1Þ

where Xk is the state vector at time t ¼ kDt with Dt being the sam-
pling time step, Ak is the state transformation matrix, f uk denotes the
unmeasured external input vector with the influence matrix Gk, and
wk is the model noise (uncertainty) with zero mean and a covari-
ance matrix Q k.

Analogous to the scheme of the classical Kalman Filtering (KF)

approach, X
�
kþ1jk is first predicted as,

X
�
k þ 1jk ¼ AkX̂kjk þ Gk f̂ ukjk ð2Þ

where X
�
k þ 1jk and X̂kjk denote the predictedXkþ1 and estimatedXk at

time t ¼ kDt, respectively. f̂ ukjk also denotes the estimated f u at time

t ¼ kDt.
In practice, only partial structural responses can be measured.

The discrete form of the observation equation can be expressed as

Ykþ1 ¼ Ckþ1Xkþ1 þ Hu
kþ1f

u
kþ1 þ vkþ1 ð3Þ

where Yk+1 is the measured response vector at time t = (k + 1)Dt,
Ck+1 and Hu

k þ 1 are measurement matrices with structural state
and unmeasured input vector, respectively, and vkþ1 is the mea-
surement noise vector, which is assumed a Gaussian white noise
vector with zero mean and a covariance matrix Rkþ1.

Then, the estimated Xkþ1 in the measurement update (correc-
tion) procedure is derived as

X̂kþ1jkþ1 ¼ X
�
kþ1jk þ Kkþ1ðYkþ1 � Ckþ1X

�
kþ1jk � Hu

kþ1 f̂
u
kþ1jkþ1Þ ð4Þ

where Kkþ1 is the Kalman gain matrix given by

Kkþ1 ¼ ePX

kþ1 kj C
T
kþ1ðCkþ1

ePX

kþ1jkC
T
kþ1 þ Rkþ1Þ

�1
ð5Þ

in which P
�
X
kþ1jk denotes the error covariance matrices of the pre-

dicted state vector X by Eq. (2). The subscript k + 1|k denotes the esti-
mation value at time step k + 1 with the observation at time step k.

Under the condition that the number of measurements (sen-

sors) is no less than that of the unknown inputs, f̂ ukþ1jkþ1 can be esti-
mated by minimizing the error vector Dkþ1 defined by:

Dkþ1 ¼ Ykþ1 � Ckþ1X̂kþ1jkþ1 � Hu
kþ1 f̂

u
kþ1jkþ1

¼ ðI � Ckþ1Kkþ1ÞðYkþ1 � Ckþ1X
�
kþ1jkÞ

�ðI � Ckþ1Kkþ1ÞHu
kþ1 f̂

u
kþ1jkþ1

ð6Þ

Then, f̂ ukþ1jkþ1 can be estimated from Eq. (6) based on the least-
squares estimation as

f̂ ukþ1jkþ1 ¼ Sk þ 1H
uT
kþ1R

�1
kþ1ðI � Ckþ1Kkþ1Þ Yk þ 1 � Ckþ1X

�
kþ1jk

h i
ð7Þ

in which,

Sk þ 1 ¼ HuT
kþ1R

�1
kþ1ðI � Ckþ1Kk þ 1ÞHu

kþ1

h i�1
ð8Þ

Also, the error covariance matrices can be derived as [34]

bPX

kþ1 kþ1j ¼ E beX
kþ1 kþ1j ðbeX

kþ1 kþ1j ÞT
h i

¼ðIþKkþ1Dkþ1Skþ1D
T
kþ1R

�1
kþ1Ck þ 1ÞðI�Kk þ 1Ck þ 1ÞePX

kþ1 kj

ð9Þ

P̂f
kþ1 kþ1j ¼ E êfkþ1 kþ1j ðêfkþ1 kþ1j ÞT

h i
¼ Sk þ 1D

T
kþ1R

�1
k þ 1ðI � Ck þ 1Kk þ 1Þ

�ðCk þ 1P
�X
k þ 1 kj C

T
kþ1 þ Rk þ 1Þ

�ðI � Ck þ 1Kk þ 1ÞTR�T
k þ 1Dkþ1S

T
kþ1

¼ Sk þ 1D
T
kþ1ðI � Ck þ 1Kk þ 1ÞTR�T

k þ 1Dkþ1S
T
kþ1 ¼ Sk þ 1

ð10Þ

P̂Xf
kþ1 kþ1j ¼ E êXkþ1 kþ1j ðêfkþ1 kþ1j ÞT

h i
¼ ðP̂Xf

kþ1 kþ1j ÞT ¼ �Kkþ1H
u
kþ1Skþ1

ð11Þ

P
�
X
kþ1 kj ¼ E êXkþ1 kj ðêXkþ1 kj Þ

T
h i

¼ Ak Gk½ �
P̂ X

k kj P̂Xf
k kj

P̂fX
k kj P̂ f

k kj

24 35 AT
k

GT
k

" #
þ Q k

ð12Þ
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