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a b s t r a c t

This paper proposes a divergence mean-based geometric detector to deal with the problem of target
detection in a clutter with the limited sample data. In particular, a covariance matrix is used to model
the correlation of sample data in each cell in one coherent processing interval. This modeling method
can avoid the poor Doppler resolution as well as the energy spread of the Doppler filter banks result from
the fast Fourier transform. Moreover, a pre-processing procedure, conceived from the philosophy of the
bilateral filtering in image denoising, is proposed and combined within the geometric detection frame-
work. As the pre-processing procedure acts as the clutter suppression, the performance of geometric
detector is improved. Numerical experiments and real clutter data are given to validate the effectiveness
of our proposed method.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Improving the performance of target detection in a clutter is
very important for a radar system. However, the classical fast Four-
ier transform (FFT) based constant false alarm rate (CFAR) detector
[1] usually suffer from severe performance degradation with the
limited sample data. This is because, the Doppler resolution is poor
and the energy of the Doppler filter banks spreads, when the FFT is
used to model the correlation of sample data. To address these
problems, Barbaresco employed the structure of Riemannian man-
ifold, and has proposed a generalized CFAR technique on a Rieman-
nian manifold of Hermitian positive-definite (HPD) matrices. This
method was named as the Riemannian mean-based geometric
detector [2]. In this detector, the pulse data z is modeled by a Gaus-
sian random process with zero mean, and then the information of
target is represented by an HPD matrix Ri. The detection statistic is
defined as the distance between the HPD matrix RD of cell under

test and the mean matrix R
�
calculated by the matrices of reference

cells. The mean matrix denotes the clutter power level. Finally, the
decision is made by comparing the statistic in each cell with an

adaptive threshold c. It can be referred to Fig. 1. As this detector
takes the structure of HPD matrix space into account, it can be
viewed as a geometric detector.

In this geometric detector, the sample data in each range cell in
one CPI is modeled as an HPD matrix. The geometric metric is
derived according to this parameterization [2,3]. On the basis of
the metric, the existence and uniqueness of geometric mean had
been proven in [4]. The geometric detector has been used to mon-
itor the turbulence of a plane [5–7], target detection in coastal X-
band and HF surface wave radars [2,3]. Many experimental results
have shown that the performance of geometric detector outper-
forms the FFT-CFAR [3].

The Riemannian mean-based geometric detector and the classi-
cal FFT-CFAR detector are of similar schemes under the CFAR for-
mulation. The main difference between the geometric detector
and the FFT-CFAR detector in the following three aspects: 1) the
model for the correlation of data is an HPD matrix, instead of the
FFT coefficient; 2) the distance metric utilized is the geometric
measure, and not the Euclidean distance; and 3) the average value
of HPD matrices is the geometric mean, rather than the arithmetic
average. These differences imply that the geometric detector per-
forms on the HPDmatrix space, in other words, the different geom-
etry considered in detection. Furthermore, as the geometric
detection method is performed on the HPD covariance matrix
space, in this sense, the geometric method can be seemed as the
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covariance matrix-based geometric detection. Under the general-
ized likelihood ratio test (GLRT), there are many covariance
matrix-based algorithms, such as the Kelly’s GLRT detector [8],
the adaptive matched filter detector [9], and the normalized
matched filter detector [10]. In particular, in [11–13], the authors
exploit the priori information about the surrounding environment
for estimating the covariance matrix to achieve a significant per-
formance improvement. Another example is provided in [14], the
Bayesian approach is employed to assume a suitable distribution
about the unknown clutter covariance matrix, and similar methods
also are found in [15]. The common goals of these detection algo-
rithms are to attain a suitable covariance matrix in nonhomoge-
neous non-Gaussian clutter, and to improve the detection
performance. The decisions about the presence and absence of a
target with respect to these methods are made by Neyman-
Pearson Lemma according to compare the value of test statistic
with a threshold, which is set by fixing the false alarm probability
at a certain level while maximizing the probability of detection.
These covariance matrix–based algorithms do not consider the
intrinsic structure embedding in covariance matrix space, and are
based on the Neyman-Pearson criterion. Therefore, these methods
are totally different from the geometric detection method which is
based upon the properties of the Gaussian processes instead of the
Neyman–Pearson Lemma.

Manymetrics can be used tomeasure the closeness between any
two points on the Riemannian manifold of HPD matrices. Different
measurements can reflect different structures of this space. Many
divergences can be used as measurements. Mentioned a few, the
square loss is used to measure the distance between the two states
in the regression; the Bhattacharyya divergence has employed to
medical image segmentation [16,17]; and the Kullback-Leibler
(KL) divergence has been widely used to measure the information
difference between two probability distributions [18]. These met-
rics have achieved good results in many applications. In our previ-
ous work [19], we have studied a geometric detection method
based on KL divergence. Experiments have shown that its perfor-
mance outperforms the traditional FFT-CFAR detector.

In this paper, we explore the geometric detector base on differ-
ent metrics. In particular, the Log-Euclidean distance [20], the Bhat-
tacharyya divergence [21], and the Hellinger distance [22] are used
as replacements of the Riemannian distance in the geometric detec-
tor. Based on the three metrics, the Log-Euclidean mean [23], the
Bhattacharyya mean [16], and the Hellinger mean [22] of a finite
set of HPD matrices are derived. As a result, a divergence mean-
based geometric detector is developed. Moreover, we propose a
weighted average filter which is combined within the geometric
detector. This filter is conceived from the philosophy of the bilateral
filtering in image denoising [24]. As this filter acts as a clutter sup-
pression procedure, the detection performance can be improved.

The rest of this paper is organized as follows. In Section 2, we
give a description about the signal model and signal manifold. In
Section 3, the Riemannian geometry of space of HPD matrices
and the divergence means are presented. The divergence mean-
based geometric detector is developed in Section 4. Then, we eval-
uate the performances of the divergence mean-based geometric
detector as well as the Riemannian mean-based geometric detector
and the FFT-CFAR detector by simulated data and real clutter data
in Section 5. Finally, conclusion is provided in Section 6.

1.1 Notation

Here are some notations for the descriptions of this article. A
scalar x is denoted using the math italic. A matrix A and a vector
x are noted as uppercase bold and lowercase bold, respectively.

The conjugate transpose of matrix A is denoted as AH . tr Að Þ is the
trace of matrix A. det Að Þ is the determinant of matrix A. I denotes
the identity matrix. The set of all n-dimensional vectors is noted by
C nð Þ. H nð Þ is the set of all n� n Hermitian matrices. kAkF denotes
the F-norm of matrix A. P nð Þ is the space of all n� n HPD matrices.
Finally, E �ð Þ denotes the statistical expectation.

2. Signal model and signal manifold

The radar usually sends several pulses to a moving target, and
receives the return data which contains the phase information of
this target. A certain model is used to capture the Doppler of target.
In this paper, the Doppler is represented as the correlation of data z
= {z1, z2, . . ., zn}, and is modeled as a multivariate Gaussian process
with zero mean, z � CN 0;Rð Þ [2],

p z Rjð Þ ¼ 1
pndet Rð Þ expf�zHR�1zg ð1Þ

here, the matrix R is an HPD matrix, and it can be computed as
[2],

R ¼ E½zzH� ¼

r0 r
�
1 � � � r

�
n�1
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�
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. . .
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666664
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rk ¼ E½ziz
�
iþk�; 0 � k � n� 1; 0 � i � n� 1

ð2Þ

where rk denotes the correlation coefficient of pulse data, and r
�
i

is the complex conjugate of ri. As there is not enough sample data

to compute the statistical expectation E½ziz
�
iþk�, according to the

ergodicity, it can be calculated by a finite time serial,

r̂k ¼ 1
n� k

Xn�1�k

j¼0

zjz
�
jþk; 0 � k � n� 1 ð3Þ

The pulse data z = {z1, z2, . . ., zn} in each cell in one CPI is mod-
eled by Eqs. (1) and (2), and represented by an HPD matrix R. The
pulse data z is staying in the Euclidean space, and the HPDmatrix R
is viewed as a point in the manifold. Through this parameteriza-
tion, the data z is transformed into an n dimensional non-liner
manifold space,

w : C nð Þ ! P nð Þ; z ! R 2 P nð Þ ð4Þ
Here P nð Þ forms a differentiable Riemannian manifold [25] with

non-positive curvature [26,27]. Through this modelling for the
radar echo, the target detection should be performed in the mani-
fold. In particular, the structure of matrix space can be considered.
The manifold P nð Þ is a symmetric space [28], and more presenta-
tions can be found in [29].

Fig. 1. Riemannian mean-based geometric detector [2].
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