Accepted Manuscript

Optimization of USSP duration for enhanced corrosion resistance of AA7075

Vaibhav Pandey, J.K. Singh, K. Chattopadhyay, N.C. Santhi Srinivas, Vakil Singh

PII: S0041-624X(18)30126-4

DOI: https://doi.org/10.1016/j.ultras.2018.08.011

Reference: ULTRAS 5809

To appear in: *Ultrasonics*

Received Date: 15 February 2018

Revised Date: 3 July 2018 Accepted Date: 16 August 2018

Please cite this article as: V. Pandey, J.K. Singh, K. Chattopadhyay, N.C. Santhi Srinivas, V. Singh, Optimization of USSP duration for enhanced corrosion resistance of AA7075, *Ultrasonics* (2018), doi: https://doi.org/10.1016/j.ultras.2018.08.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Optimization of USSP duration for enhanced corrosion resistance of

AA7075

Vaibhav Pandey¹, J. K. Singh², K. Chattopadhyay¹*, N. C. Santhi Srinivas¹, Vakil Singh¹

¹Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu

University), Varanasi 221005, India

²Department of Architectural Engineering, Hanyang University, 1271 Sa 3-dong, Sangrok-gu,

Ansan 426-791, Korea

*Corresponding author. E-mail address: kausik.met@iitbhu.ac.in

Fax: +915422369478

Abstract

This investigation was carried out following our earlier work on the effect of ultrasonic shot

peening (USSP) on corrosion resistance of the 7075 aluminium alloy in 3.5wt% NaCl solution to

optimize the duration of USSP. The un-USSP treated and different USSP treated samples were

subjected to potentiodynamic polarization and electrochemical impedance spectroscopy. Among

the specimens USSP treated from 5 to 30 seconds, the one USSP treated for 15 seconds (USSP

15) was found to exhibit highest corrosion potential (E_{corr}) and lowest corrosion current density

(i_{corr}). Corrosion products were characterized by Scanning Electron Microscopy (SEM) and X-

ray Photoelectron Spectroscopy (XPS). Scanning Kelvin Probe Force Microscopy (SKPFM) was

used to measure the surface free potential. The enhanced corrosion resistance of the USSP 15

sample was found to be due to combined effect of surface nanostructure of the matrix,

homogeneity and refinement of second phase precipitates. There was enhancement in formation

of adherent passive layer in the USSP15 specimen.

Keywords: Nanostructure, Ultrasonic Shot Peening, TEM, SEM, Polarization, EIS.

1

Download English Version:

https://daneshyari.com/en/article/9953730

Download Persian Version:

https://daneshyari.com/article/9953730

<u>Daneshyari.com</u>