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a b s t r a c t

We consider five dimensional conformal gravity theory which describes an anisotropic extra dimension.
Reducing the theory to four dimensions yields Brans–Dicke theory with a potential and a hidden
parameter α which implements the anisotropy between the four dimensional spacetime and the extra
dimension. We find that a range of value of the parameter α can address the current dark energy density
compared to the Planck energy density. Constraining the parameter α and the other cosmological model
parameters using the recent observational data consisting of the Hubble parameters, type Ia supernovae,
and baryon acoustic oscillations, together with the Planck orWMAP 9-year data of the cosmic microwave
background radiation, we find α > −2.05 for Planck data and α > −2.09 for WMAP 9-year data at
95% confidence level. We also obtained constraints on the rate of change of the effective Newtonian
constant (Geff) at present and the variation of Geff since the epoch of recombination to be consistent with
observation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, research on the higher dimensional gravity theories
like Kaluza–Klein theory, string theory, and brane world scenario
constitutes one of themainstreamof theoretical particle physics. In
such theories, it is usually taken for granted that the higher dimen-
sional spacetime is isotropic. Even though the isotropic spacetime
appeals more aesthetical from the viewpoint of symmetry like
Lorentz symmetry and general covariance, this has never been
experimentally verified. Therefore, it is a fundamental question to
ask whether higher dimensional spacetime has uniform physical
properties in all directions [1,2] and envisage the possibility that
the extra dimensions might not share the same property with the
four dimensional spacetime we are living in.

Recently, an attempt to construct a higher dimensional gravity
theory in which the four dimensional spacetime and extra dimen-
sions are not treated on an equal footing was made [3]. It is based
on two compatible symmetries of foliation preserving diffeomor-
phism and anisotropic conformal transformation. The anisotropy is
first implemented in the higher dimensional metric by keeping the
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general covariance only for the four dimensional spacetime. This
was achieved by adopting foliation preserving diffeomorphism in
which the foliation is adapted along the extra dimensions. Then, it
was extended to conformal gravity with introduction of conformal
scalar field. In order to realize the anisotropic conformal invariance
a real parameter α which measures the degree of anisotropy of
conformal transformation between the spacetime and extra di-
mensional metrics was introduced. In the zero mode effective four
dimensional action, it reduces to a scalar-tensor theory coupled
with nonlinear sigma model described by extra dimensional met-
rics. There are no restrictions on the value of α at the classical level.
In this paper, we present a cosmological test of the scalar-tensor
theory thus obtained in the case of five dimensional theory and
check whether or not a specific value of α is preferred.

In general, the conformal invariance constrains the theory in a
very tight form in a conformal gravity [4], and contains at most
one parameter, that is the potential coefficient λ, V (φ) =

λ
4φ4.

The Brans–Dicke theory contains more parameters [5]: one is ω,
which is the ratio between the nonminimally coupled φ2R term
and kinetic energy term for φ. Others are the potential and its
respective coefficients, if introduced. It turns out that in the five
dimensional anisotropic conformal gravity, the effective four di-
mensional scalar-tensor theory reduces to the Brans–Dicke theory
with a potential, in which the parameter ω and the power of the
potential, V (φ) ∼ φn, are determined in term of the parameter α.
Therefore, from the view point of Brans–Dicke theory,α is a hidden
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parameter and this is a consequence of anisotropic conformal
invariance in higher dimensions.

In the gravitational theory with anisotropic conformal invari-
ance, it is more convenient to work with a dimensionless scalar
field in order to countercheck the arbitrary anisotropy factor α.
Recall that the kinetic coefficient ω of the Brans–Dicke theory can
be allowed to be an arbitrary (positive definite) function of the
scalar field, ω = ω(φ), which results in a general class of scalar-
tensor theories with a dimensionless scalar field and they can be
testedwith the solar system experiments [5]. In our case, the scalar
field is also dimensionless. Nevertheless, ω is constrained to be
a constant for the sake of the anisotropic conformal invariance,
rendering the theory to be a Brans–Dicke type.

Another important point to be mentioned is that in our four
dimensional Brans–Dicke theory, the origin of the Brans–Dicke
scalar can be identifiedwith the conformal scalar that is necessarily
introduced for the purpose of conformal invariance. It is well-
known that in the isotropic case, the conformal or Weyl scalar
field is a ghost field with a kinetic coefficient yielding a negative
kinetic energy and they cannot become the Brans–Dicke scalar [4].
However, in the anisotropic case, the kinetic coefficient ω is de-
termined as a specific function of α and there exists a range of
parameter α where ω(α) becomes positive. We will check that the
actual cosmological test prefers the range of parameter α with a
positive value of ω.

The paper is organized as follows: In Section 2, we give a formu-
lation of the 5D gravity with anisotropic conformal invariance and
perform dimensional reduction to obtain 4D Brans–Dicke theory.
We perform cosmological analysis and give numerical results for
evolution equations. In Section 3, comparisons with the recent
cosmological data are made and the range of parameter α is con-
strained. Section 4 contains conclusion and discussion.

2. Model

We start with a formulation of 5D anisotropic conformal grav-
ity. The first part of this section is mostly redrawn from Ref. [3] to
make the paper self-contained. Let us first consider the Arnowitt–
Deser–Misner (ADM) decomposition of five dimensional metric:

ds2 = gµν(dxµ
+ Nµdy)(dxν

+ Nνdy) + N2dy2. (2.1)

Then, the five dimensional Einstein–Hilbert action with cosmolog-
ical constant is expressed as

SEH =

∫
dyd4xN

√
−g M3

∗

[
(R − 2Λ5) − {KµνKµν

− K 2
}
]
, (2.2)

where M∗ is the five dimensional gravitational constant, R is the
spacetime curvature, Λ5 is the cosmological constant, and Kµν is
the extrinsic curvature tensor, Kµν = (∂ygµν −∇µNν −∇νNµ)/(2N).
The above action (2.2) can be extended anisotropically by breaking
the five dimensional general covariance down to its foliation pre-
serving diffeomorphism symmetry given by

xµ
→ x′µ

≡ x′µ(x, y), y → y′
≡ y′(y), (2.3)

g ′

µν(x
′, y′) =

(
∂xρ

∂x′µ

)(
∂xσ

∂x′ν

)
gρσ (x, y), (2.4)

N ′µ(x′, y′) =

( ∂y
∂y′

)[∂x′µ

∂xν
Nν(x, y) −

∂x′µ

∂y

]
, (2.5)

N ′(x′, y′) =

(
∂y
∂y′

)
N(x, y), (2.6)

and non-uniform conformal transformations

gµν → e2ω(x,y)gµν, N → eαω(x,y)N, Nµ
→ Nµ, ϕ → e−

α+2
2 ωϕ,

(2.7)

where a Weyl scalar field ϕ to compensate the conformal trans-
formation of the metric is introduced. In the above Eq. (2.7), a
factor α is introduced in the transformation of N(=g55), which
characterizes the anisotropy of spacetime and extra dimension.1
The anisotropicWeyl action invariant under Eqs. (2.3)–(2.7) for an
arbitrary α can be written as

S =

∫
dyd4x

√
−gNM3

∗

[
ϕ2
(
R −

12
α + 2

∇µ∇
µϕ

ϕ

+
12α

(α + 2)2
∇µϕ∇

µϕ

ϕ2

)
− β1ϕ

−
2(α−4)
α+2

{
BµνBµν

− λB2}
+ β2ϕ

2AµAµ
− V (ϕ)

]
(2.8)

where β1, β2, λ are some constants, the potential V , Bµν and Aµ are
given by

V = V0ϕ
2(α+4)
α+2 , (2.9)

Bµν = Kµν +
2

(α + 2)Nϕ
gµν(∂yϕ − ∇ρϕNρ) , B ≡ gµνBµν,

(2.10)

Aµ =
∂µN
N

+
2α

α + 2
∂µϕ

ϕ
. (2.11)

A couple of comments are in order. The isotropic casewith β1 =

λ = α = 1, andβ2 = 0 leads to five dimensionalWeyl gravitywith
a potential V ∼ φ

10
3 [4]. In the anisotropic case, the action (2.8)

is, in general, plagued with perturbative ghost instability coming
from breaking of the full general covariance of 5D. However, it
can be shown that this problem can be cured by constraining the
constants β1 and β2, especially with 0 < β2 < 3

2 [3].
Now we discuss 4-dimensional effective low energy action and

let us consider only zero modes. We first go to a ‘‘comoving’’ frame
with Nµ

= 0 and impose y-independence (cylindrical condition)
for gµν = gµν(x), φ = φ(x) and N = N(x). This enables to replace∫
dy = Lwhere L is the size of the extra dimension and eliminates

terms containing Bµν and B. The resulting action preserves the
redundant conformal transformation

gµν → e2ω(x)gµν, N → eαω(x)N, ϕ → e−
α+2
2 ω(x)ϕ, (2.12)

where ω(x, y) in (2.7) is replaced with ω(x). Using this, we further
fix N(x) = 1 and find the resulting four dimensional action given
by

S =

∫
d4x

√
−g

[
γ1M2

p

2
ϕ2R −

γ1M2
pω

2
∇µϕ∇

µϕ

− γ2M4
pϕ

2α+8
α+2

]
, (2.13)

where γ1 and γ2 are defined as

M3
∗
L ≡ γ1M2

p/2 , M3
∗
LV0 ≡ γ2M4

p , (2.14)

and ω is given by

ω ≡
−4(α + 1)(β2α + 6)

(α + 2)2
. (2.15)

Let us redefine the field as

ϕ → ϕ̃ =
√

γ1ϕ.

1 We assume that the field ϕ is a dimensionless and M∗ is a scale related with
Planck scale.We also consider only the caseα ̸= −2, becauseϕ is not effected under
the conformal transformation in (2.7). It can be actually shown that for α = −2, an
anisotropic scale invariant gravity theory can be constructed without the need of
the field ϕ.
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