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A B S T R A C T

The facilities designed to study collisions of relativistic nuclei, such as the MPD at NICA (JINR), STAR at RHIC
(BNL), ALICE, ATLAS and CMS at the LHC (CERN), are equipped with pairs of hadronic Zero Degree Calorimeters
(ZDC) to detect forward nucleons at the both sides of the interaction point and estimate the collision centrality.
The energy deposited in a ZDC fluctuates from one event to another, but on average it is proportional to the
number of absorbed nucleons. Forward nucleons are also emitted in electromagnetic dissociation (EMD) of
nuclei in ultraperipheral collisions, and they are used to monitor the luminosity. As known, ZDC energy spectra
are specific to each facility, because they are affected by the ZDC acceptance, and the ZDC energy resolution
depends on the beam energy. In this work a simple probabilistic model leading to handy formulas has been
proposed to connect the numbers of emitted and detected forward nucleons taking into account a limited ZDC
acceptance. The ZDC energy spectra from the EMD with the emission of one, two, three and four forward neutrons
and protons have been modeled for the collision energies of NICA and the LHC. The case of a rather small ZDC
acceptance has been investigated and a possibility to measure the inclusive nucleon emission cross section has
been demonstrated.

1. Introduction

There exists a relationship between the impact parameter as an
important initial condition of a nucleus–nucleus collision event and the
number of spectator nucleons beyond the overlap zone which continue
to propagate in the forward direction after the collision. This motivates
the use of forward hadronic calorimeters in studies of interactions of
relativistic nuclei. In particular, the experiments at heavy-ion colliders
like the MPD at NICA (JINR) [1,2], STAR at RHIC (BNL) [3], ALICE [4–
6], ATLAS [7] and CMS [8] at the LHC (CERN) are equipped with
pairs of hadronic Zero Degree Calorimeters (ZDC) for detecting forward
nucleons at the both sides of the interaction point. One of the most
reliable methods to sort collision events into centrality classes is based
on detecting spectator neutrons in the ALICE ZDC [9]. The electromag-
netic dissociation (EMD) of nuclei in ultraperipheral collisions is another
source of forward nucleons. This process is used to monitor the collider
luminosity [10,11] on the basis of the EMD cross sections which were
reliably calculated [11,12] and accurately measured [13].
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It is quite common to calculate the distributions of energy absorbed
in a ZDC (ZDC energy spectra) by Monte Carlo modeling specifically for
each facility. The simulations account for the actual beam energy, the
geometric acceptance of ZDC and the efficiency of nucleon registration,
which vary from one set-up to another. Therefore, ZDC energy spectra
calculated for different facilities differ from each other, but nevertheless
one can point out common characteristics of the spectra and study
their dependence on the beam energy and ZDC acceptance. ZDC are
designed for counting forward nucleons resulting from nucleus–nucleus
collisions on the basis of energy deposited by these nucleons in ZDC.
However, the performance of ZDC deteriorates when some of nucleons
emitted in a multinucleon event do not hit ZDC. Since spectator nucleons
are emitted close to the directions of the colliding beams in heavy
ion colliders [3,4,14], the space available for placing a ZDC is rather
limited. A ZDC installed in a close proximity of beam pipes can be also
partially obscured by collimators, vacuum chambers or other collider
components [14]. Forward protons hit the LHC beam pipes before they
reach the ALICE proton ZDC [4,14] and some protons are scattered by
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the walls of the pipes at large angles. In the present work a simple
probabilistic model leading to handy formulas is proposed to relate the
numbers of emitted and detected forward nucleons taking into account
a limited ZDC acceptance.

2. ZDC response to forward nucleons

A ZDC is typically build in such a way that its dimensions are
sufficient for the absorption of a primary forward nucleon as well as
most of secondary particles created by this nucleon in electromagnetic
processes and nuclear reactions inside the calorimeter [5]. Therefore,
the average energy deposited in the ZDC by a single spectator nucleon
corresponds to its energy which, in its turn, amounts to the beam energy.
The energy deposited in the ZDC fluctuates from one multinucleon event
to another, but on average it is proportional to the number of absorbed
nucleons. It is quite common to characterize the distribution of energy in
the ZDC for one-nucleon events by means of a Gaussian with the mean 𝜇1
equal to the beam energy 𝐸0 and the dispersion 𝜎1 also depending on 𝐸0.
Two functions are usually considered to approximate the dependence of
energy resolution 𝜎1∕𝜇1 on 𝐸0. For example, in Refs. [1,4] the energy
resolution has been evaluated as:

𝜎1
𝜇1

=

√

𝑎2
𝐸0

+ 𝑏2, (1)

while in Refs. [5,15] a bit different approximation has been adopted:
𝜎1
𝜇1

= 𝑐
√

𝐸0
+ 𝑑. (2)

Naturally, the functions (1) and (2) are nearly equivalent to each
other in the case of 𝑎 ≈ 𝑐 and the smallness of the second terms in
comparison to the first ones at low beam energy. The higher the beam
energy, the better the ZDC energy resolution is. For example, 𝜎1∕𝜇1
calculated at 𝐸0 = 2510 GeV with Eq. (1) for the ALICE neutron ZDC with
the parameters 𝑎 = 256.6% GeV1∕2 and 𝑏 = 10.3% amounts to 11.5% [4].

The numbers of forward nucleons are obtained in ALICE [5,13] and
other experiments [7,8] by fitting the measured distributions of energy
𝐸 deposited in calorimeters in multinucleon events. In particular, the
fitting functions 𝐹 (𝐸) are constructed as the sum of four Gaussians
corresponding to 𝑖 = 1, 2,… , 4 nucleons emitted in EMD events [13]:
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Each Gaussian 𝑓𝑖(𝐸) representing an 𝑖th peak is characterized by its
mean value 𝜇𝑖, its dispersion 𝜎𝑖 and the normalization constant 𝖭𝑖 which
is proportional to the numbers of events with 𝑖 nucleons. Here 𝜇1 = 𝐸0,
𝜇𝑖 = 𝑖𝜇1 and 𝜎𝑖 =

√

𝑖𝜎1. In addition, a correction for the pedestal in the
ZDC signal has been introduced in Ref. [13], which affects 𝜎𝑖. However,
for the sake of simplicity the function (3) without a pedestal correction
is used in the present work to represent the ZDC energy spectra in
NICA/MPD and ALICE experiments.

3. Correction for ZDC acceptance to the measured yields

As discussed above in Section 2, the numbers of events with different
multiplicities of forward nucleons 𝖭𝑖 can be reliably measured by fitting
the ZDC energy distribution by the sum of Gaussians providing that all
such nucleons are intercepted by the ZDC. However, the determination
of 𝖭𝑖 is not straightforward in the case when some of forward nucleons
are lost due to a limited ZDC acceptance. These nucleons either do
not hit the calorimeter at all or deposit a reduced energy due to their
peripheral impact on the ZDC and shower leakage. In particular, in
some of three-nucleon events either one or two nucleons can be lost.
As a result, such three-nucleon events are misidentified, respectively, as
two-nucleon or one-nucleon events. In general, 𝗇𝑖 as numbers of detected

events of each nucleon multiplicity 𝑖 have to be used in Eq. (3) instead
of true numbers 𝖭𝑖.

The corrections for the ZDC acceptance and efficiency to the yields of
one-, two- and three-neutron events measured in the EMD of 158A GeV
indium nuclei in collisions with Al, Cu, Sn and Pb targets has been
introduced in Ref. [16]. Such corrections were specific to the experiment
of Ref. [16], but one can think of a more general approach to account
for the ZDC acceptance. In the present work a simple probabilistic
(combinatorial) model is formulated to account for a limited ZDC
acceptance and to study the impact of this limitation on measured
ZDC energy spectra. In this model the numbers 𝗇𝑖 of detected events
of nucleon multiplicity 𝑖 are related with the numbers of true events 𝖭𝑖.
In particular, this model can be applied to forward nucleons emitted in
the EMD, where one-nucleon and two-nucleon channels dominate [12].
Due to this dominance it is sufficient to consider only the emission of
one, two, three and four nucleons to find the connection between 𝗇1, 𝗇2,
𝗇3, 𝗇4 and 𝖭1, 𝖭2, 𝖭3, 𝖭4. These numbers are connected by means of a
triangular transformation matrix 𝖯:
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The diagonal elements of 𝖯 represent the probabilities 𝗉11,… , 𝗉44 to
detect exactly the same numbers of forward nucleons as were emitted
in events with respective multiplicity 𝑖 = 1,… , 4. The off-diagonal
elements 𝗉𝑘𝑛, 𝑘 < 𝑛 represent the probability to detect 𝑘 nucleons out
of 𝑛 emitted. In ZDC energy spectra low-multiplicity peaks are filled by
high-multiplicity events as some of nucleons are lost.

The most reliable way to obtain 𝗉𝑘𝑛 consists in Monte Carlo modeling
of the respective experimental setup. However, one can assume that the
probability 𝗉 to detect a forward nucleon remains the same in low and
high multiplicity events. This condition holds when the transverse mo-
mentum distribution of forward nucleons has a weak dependence on the
event multiplicity. This assumption leads to the binomial distribution of
the probabilities with its parameter 𝗉:
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Here the binomial coefficient is defined as
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)

= 𝑛!∕(𝑛−𝑘)!𝑘! . Following
this assumption, the transformation matrix is written as:
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Due to a limited ZDC acceptance the detection of multinucleon events
is suppressed, while the relative contribution of detected single-nucleon
events is enhanced. In order to obtain true numbers 𝖭𝑖 of events of each
multiplicity, an inverse transformation can be applied to the numbers 𝗇𝑖
of detected events:
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with the following explicit result:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝖭1 =
1
𝗉

(

𝗇1 −
2(1 − 𝗉)

𝗉
𝗇2 +

3(1 − 𝗉)2

𝗉2
𝗇3 −

4(1 − 𝗉)3

𝗉3
𝗇4

)

𝖭2 =
1
𝗉2

(

𝗇2 −
3(1 − 𝗉)

𝗉
𝗇3 +

6(1 − 𝗉)2

𝗉2
𝗇4

)

𝖭3 =
1
𝗉3

(

𝗇3 −
4(1 − 𝗉)

𝗉
𝗇4

)

𝖭4 =
1
𝗉4

𝗇4

(8)

2



Download English Version:

https://daneshyari.com/en/article/9953871

Download Persian Version:

https://daneshyari.com/article/9953871

Daneshyari.com

https://daneshyari.com/en/article/9953871
https://daneshyari.com/article/9953871
https://daneshyari.com

