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We present a theoretical parametrization of the nucleon electromagnetic form factors (FFs) based on 
a combination of chiral effective field theory and dispersion analysis. The isovector spectral functions 
on the two-pion cut are computed using elastic unitarity, chiral pion–nucleon amplitudes, and timelike 
pion FF data. Higher-mass isovector and isoscalar t-channel states are described by effective poles, whose 
strength is fixed by sum rules (charges, radii). Excellent agreement with the spacelike proton and neutron 
FF data is achieved up to Q 2 ∼ 1 GeV2. Our parametrization provides proper analyticity and theoretical 
uncertainty estimates and can be used for low-Q 2 FF studies and proton radius extraction.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The electromagnetic form factors (EM FFs) parametrize the 
transition matrix element of the EM current between nucleon 
states and represent basic characteristics of nucleon structure. The 
FFs at spacelike momentum transfers Q 2 � 1 GeV2 have been 
measured in a series of elastic electron scattering experiments 
[1–3], most recently at the Mainz Microtron (MAMI) [4–6] and 
at Jefferson Lab [7–9]. The derivative of the proton electric FF at 
Q 2 = 0 (charge radius) is also determined with high precision 
in atomic physics experiments. Discrepancies between results ob-
tained with different methods have raised interesting questions 
concerning the precise value of the proton charge radius and 
the Q 2 → 0 extrapolation of the elastic scattering data [10–12]. 
Besides their importance for nucleon structure, the EM FFs are 
needed as an input in other areas of study, such as precision mea-
surements of quantities used to test the Standard Model.

The experiments and applications require a theoretical descrip-
tion of the FFs that covers a broad range Q 2 ∼ few GeV2 and 
controls the behavior in the Q 2 → 0 limit (higher derivatives). This 
can be accomplished using the framework of dispersion theory, 
which incorporates the analytic properties of the FFs in the mo-
mentum transfer. Dispersive parametrizations of the nucleon FFs 
have been constructed using empirical spectral functions, deter-
mined by amplitude analysis techniques and fits to the FF data 
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[13–16]. It would be desirable to have a dispersive parametrization 
that is based on first-principles dynamical calculations and permits 
theoretical uncertainty estimates.

In recent work we developed a method for computing the spec-
tral functions of nucleon FFs on the two-pion cut using a combi-
nation of chiral effective field theory (χEFT) and amplitude anal-
ysis (dispersively improved χEFT, or DIχEFT) [17,18]. The spectral 
functions are constructed using the elastic unitarity condition. The 
N/D method is used to separate the ππ rescattering effects (con-
tained in the pion timelike FF) from the coupling of the ππ system 
to the nucleon (calculable in χEFT with good convergence). The 
method permits computation of the two-pion spectral functions 
up to masses ∼1 GeV2 with controlled accuracy. In Ref. [18] the 
computed spectral functions in LO, NLO, and partial N2LO, accu-
racy were used to study the FFs at low Q 2 (<0.5 GeV2 for G E , 
<0.2 GeV2 for G M ) and their derivatives.

In this letter we use DIχEFT to calculate the nucleon FFs up to 
Q 2 ∼ 1 GeV2 (and higher) and construct a dispersive parametriza-
tion of the FFs with theoretical uncertainty estimates. This is 
achieved by extending our previous calculations in two aspects: 
(a) We partially include N2LO chiral loop corrections in the isovec-
tor magnetic spectral function, by parametrizing them in a form 
similar to the N2LO corrections in the electric case. This brings 
the calculation of electric and magnetic isovector FFs up to the 
same order. (b) We account for higher-mass t-channel states in the 
spectral functions (isovector and isoscalar) by parametrizing them 
through effective poles, whose strength is determined by sum rules 
(charges, magnetic moments, radii). This allows us to extend the 
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dispersion integrals to higher masses and compute the spacelike 
FFs up to higher Q 2. We obtain an excellent description of G E and 
G M up to Q 2 ∼ 2 GeV2 with controlled theoretical accuracy. Our 
results represent theoretical predictions in the sense that no fits 
are performed, and no empirical information from the FFs other 
than the radii is used in determining the parameters. In the follow-
ing we describe the calculation and results and discuss potential 
applications of our FF parametrization.

2. Method

The FFs are analytic functions of the invariant momentum 
transfer t ≡ −Q 2 and satisfy dispersion relations

G p,n
i (t) = 1

π

∞∫

tthr

dt′ Im G p,n
i (t′)

t′ − t − i0
(i = E, M). (1)

They allow one to reconstruct the spacelike FFs from the spectral 
functions Im G p,n

i (t′) on the cut at t′ > tthr. For theoretical anal-

ysis one uses the isovector and isoscalar combinations, G V ,S
i ≡

1
2 (G p

i ∓ Gn
i ) (i = E, M). In the isovector FF the lowest singularity 

is the two-pion cut with tthr = 4M2
π . The spectral functions on the 

two-pion cut can be obtained from the elastic unitarity conditions, 
which in the N/D representation take the form [13,19,20]

Im G V
E (t′)[ππ ] = k3

cm

mN
√

t′ J 1+(t′) |Fπ (t′)|2, (2)

Im G V
M(t′)[ππ ] = k3

cm√
2t′ J 1−(t′) |Fπ (t′)|2, (3)

where kcm = √
t′/4 − M2

π is the center-of-mass momentum of the 
ππ system in the t-channel. Here J 1±(t′) ≡ f 1±(t′)/Fπ (t′) are the 
ratios of the ππ → N N̄ partial-wave amplitudes and the timelike 
pion FF, which are real for t′ > 4M2

π and free of ππ rescatter-
ing effects. These functions can be computed in χEFT with good 
convergence [17,18]. |Fπ (t′)|2 is the squared modulus of the time-
like pion FF, which contains the ππ rescattering effects and the 
ρ meson resonance. This function is measured in e+e− → π+π−
exclusive annihilation experiments with high precision and can be 
taken from a parametrization of the data; see Ref. [21] for a review. 
Because the ππ state practically exhausts the e+e− annihilation 
cross section at t′ � 1 GeV2, the elastic unitarity relations Eqs. (2)
and (3) are assumed to be valid up to t′ = 1 GeV2.

The calculation of the J 1± functions in relativistic χEFT is de-
scribed in Ref. [18]. At LO they are given by the N and � Born 
terms in the ππ → N N̄ amplitudes and the Weinberg–Tomozawa 
term. At NLO corrections arise at tree-level from an NLO ππ N N
contact term in the chiral Lagrangian. At N2LO pion loop correc-
tions appear, and the structure becomes considerably more com-
plex. In Ref. [18] we estimated the N2LO corrections to J 1+ by 
assuming that the full N2LO result has the same structure as the 
tree-level N2LO result, in which the dominant contribution is the 
term proportional to d1 + d2. No such estimate was performed for 
J 1− , since its N2LO corrections arise entirely from loops. In order to 
extend the reach of our calculation we now want to estimate J 1+
and J 1− at the same level. This becomes possible with a general-
ization of our previous arguments. Inspecting the structure of the 
N2LO loop corrections in the π N → π N amplitude, we find that 
the dominant t-channel correction can be parametrized as

A−[N2LO loop] = 0, B−[N2LO loop] = λ t/ f 2
π , (4)

where A and B are the invariant amplitudes [22]. In this form the 
N2LO loop result in J 1− has the same structure as a tree-level cor-
rection arising from contact terms, and the parameter λ can be 
determined in the same way as in our previous estimate for J 1+ .

In order to extend the isovector spectral integrals to masses 
t′ > 1 GeV2 we need to parametrize the isovector spectral func-
tion beyond the two-pion cut. The e+e− exclusive annihilation 
data show that the isovector cross section above t′ ∼ 1 GeV2 is 
overwhelmingly in the 4π channel and peaks at t′ ≈ 2.3 GeV2

[21]. (Incidentally, this value coincides with the squared mass of 
the ρ ′ resonance observed in the ππ channel.) It is reasonable to 
assume that the strength distribution in the nucleon spectral func-
tion follows a similar pattern. The simplest way to parametrize the 
high-mass contribution to the isovector spectral function is by a 
single effective pole,

Im G V
E,M(t′)[high-mass] = πa(1)

E,M δ(t′ − M2
1), (5)

where we choose M2
1 = M2

ρ ′ = 2.1 GeV2. The total isovector spec-
tral function is given by the sum of the ππ cut (calculated in 
DIχEFT) and the high-mass part (parametrized by the effective 
pole),

Im G V
E,M = Im G V

E,M [ππ ] + Im G V
E,M [high-mass]. (6)

We then determine the parameters of the N2LO contributions in 
G V

E,M [ππ ] and the strength of the effective pole in

G V
E,M [high-mass] by imposing the sum rules for the isovector 

charge and magnetic moment, and for the electric and magnetic 
radii (here tthr = 4M2

π ):

1

π

∞∫

tthr

dt′ Im G V
E (t′)

t′ = 1
2 , (7)

1

π

∞∫

tthr

dt′ Im G V
M(t′)

t′ = 1
2 (μp − μn), (8)

6

π

∞∫

tthr

dt′ Im G V
E (t′)

t′ 2
= 〈r2〉V

E ≡ 1
2 [〈r2〉p

E − 〈r2〉n
E ], (9)

6

π

∞∫

tthr

dt′ Im G V
M(t′)

t′ 2
= 〈r2〉V

M ≡ 1
2 [μp〈r2〉p

M − μn〈r2〉n
M ]. (10)

Since the charge and magnetic moment are known precisely, the 
unknown parameters are essentially determined in terms of the 
isovector charge and magnetic radii, which can be allowed to vary 
over a reasonable range (see below). This makes our parametriza-
tion particularly convenient for applications where the nucleon 
radii are regarded as basic parameters or extracted from data.

In the isoscalar FF the lowest singularity is the 3-pion cut 
(tthr = 9M2

π ). The strength at t′ < 1 GeV2 is overwhelmingly con-
centrated in the ω resonance, which we describe by a zero-width 
pole. At t′ � 1 GeV2 the K K̄ and other channels open up. The 
exclusive e+e− annihilation data show that the strength at t′ ∼
1 GeV2 is concentrated in the φ resonance [21]. We therefore 
parametrize the high-mass isoscalar strength by an effective pole 
at the φ mass. Altogether, our parametrization of the isoscalar 
spectral function is

Im G S
E,M(t′) = πaω

E,Mδ(t′ − M2
ω) + πaφ

E,Mδ(t′ − M2
φ). (11)
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