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Metagenomic sequencing has led to a recent and rapid

expansion of the animal virome. It has uncovered a multitude of

new virus lineages from under-sampled host groups, including

many that break up long branches in the virus tree, and many

that display unexpected genome sizes and structures.

Although there are challenges to inferring the existence of a

virus from a ‘virus-like sequence’, in the absence of an isolate

the analysis of nucleic acid (including small RNAs) and

sequence data can provide considerable confidence. As a

consequence, this period of molecular natural history is helping

to reshape our views of deep virus evolution.
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Explosive metagenomic growth
It is 120 years since the word ‘virus’ was first applied

specifically to a viral pathogen [1], but the number of

known viruses is growing faster than ever (Figure 1a; [2��

]). Much of this growth is through metagenomic discov-

ery: the undirected large-scale sequencing of nucleic

acids sampled from potential hosts or their environment

[2��,3,4��]. Pioneered by studies of bacteriophage in the

marine environment [5], recent years have witnessed an

explosion in metagenomic sampling of the metazoan

virosphere. This boom has focussed first on viruses likely

to infect us and our livestock, particularly the virome of

mammalian faeces [e.g. 6], on putative disease reservoirs

such as bats [e.g. 7,8], and on arbovirus vectors [e.g. 9].

Subsequently, the focus has expanded to include

neglected animal lineages, identifying hundreds of new

RNA viruses in arthropods and other invertebrates

[10,11��,12,13], and recently in divergent and under-sam-

pled chordates [14�,15].

Compared to the isolation of new virus cultures, meta-

genomic discovery seems (relatively) cheap, easy, and

(virtually) guaranteed — sequences often appear ‘for free’

when sequencing genomes and transcriptomes

(Figure 1b–e) [10,16–18]. Nevertheless, there are clearly

limitations to metagenomic discovery — especially for

important applied questions such as ‘Where is the pan-

demic coming from?’ [2��]. With an isolate in hand we

would have more than just a ‘virus-like sequence’: we

could unambiguously confirm the host, be confident we

hadn’t been misled by a computational artefact, and study

viral replication, host range and immunity [19–21]. How-

ever, our catalogue of the virosphere is in its infancy, and

there are still great gains to be made from simple

‘molecular natural history’. Fewer than 5 thousand viruses

have received formal taxonomic recognition [22] and only

around 15 thousand have even been named informally

(Figure 1a). This is less comprehensive than the 17th

century view of plant diversity, even in absolute terms

[ca. 18 thousand species, 23], but few biologists today

would claim the naturalists of subsequent centuries

wasted their effort when making herbarium collections.

And a modern evolutionary virologist can probably learn

more from a virus genome than a 17th century botanist

could from a dried specimen.

Metagenomic discovery has already had a huge impact

on our knowledge of virus diversity. It has ‘filled in’

shallower parts of the tree, finding close relatives of

iconic human pathogens, such as new influenzas in toads

and eels [14�]. It has also discovered new deep branches,

such as clades of insect-infecting Partitiviruses [10,11��]
and Luteo/Sobemo-like viruses [10,24], and whole new

families, such as the Chuviruses [25]. This in turn has led

to renewed interest in inferring deep viral phylogenies

[11��,26�], and has prompted proposals for large-scale

updates of higher-level virus taxonomy [27�]. More

importantly, metagenomics now contributes to our

thinking on virus evolution. It has provided a better

perspective on host-association and host-switching

[14�,28,29], found familiar virus lineages with unex-

pected genome sizes and structures [11��,25,30], and

uncovered an unexpectedly dynamic history of

‘modular’ protein swapping [11��,26�]. Finally, merely

having a PCR product from a metagenomic sample can

provide an experimental route to the functional biology

of an uncultured virus [31].
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Figure 1
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Panel a: The number of distinct names for viruses (excluding phage) in the GenBank nucleotide database, by year (colours provide a scale for

panels b–d). Counts were obtained by finding the record creation date and GenBank ‘species’ (collapsing strain identifiers) for each of 2.6 million

virus sequences. Exclusion of unrecognised species names and the merging of divergent strains are likely to make this an underestimate. Panel

b: Midpoint-rooted maximum likelihood phylogeny of picorna-like viruses and caliciviruses, inferred from approximately 250 amino acids of the

polymerase. Branches are coloured by the year in which the lineage was first recorded in GenBank (colours provided by panel a). Approximately

8000 picorna-like polymerase sequences from the NCBI non-redundant protein (nr) and transcriptome shotgun assembly (tsa_nt) databases were

identified by blastp and tblastn. These were collapsed into 1140 clusters at a threshold of 96% identity, with one representative of each cluster

used to infer the tree. Around 10% of the represented picorna-like lineages are known only as unannotated virus-like sequences from

transcriptomes (pale yellow; viruses from transcriptome datasets are treated as unpublished and given a more recent date). Note that the short

conserved-sequence length leads to poor resolution and fails to recover some named genera, and that similarity criteria for inclusion means that

some picornavirus groups were excluded. Panels c,d: To illustrate with ease with which new virus-like sequences can be found in public
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