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The use and utility of computational models in drug

development has significantly grown in the last decades,

fostered by the availability of high throughput datasets and new

data analysis strategies. These in silico approaches are

demonstrating their ability to generate reliable predictions as

well as new knowledge on the mode of action of drugs and the

mechanisms underlying their side effects, altogether helping to

reduce the costs of drug development. The aim of this review is

to provide a panorama of developments in the field in the last

two years.
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Introduction
Quantitative Systems Pharmacology (QSP) is a relatively

new discipline that combines systems biology approaches

with methods of quantitative pharmacology [1]. The

combination of computational and experimental methods

via QSP approaches provides a systems level understand-

ing of the mechanism of action of drugs while leveraging

on the accumulated data on approved or failed drugs. In a

similar way, Quantitative Systems Toxicology (QST),

emerged as new paradigm for toxicity assessment [2],

focuses on understanding the adverse effects of drugs,

from molecular alterations to phenotypic observations, by

integrating computational and experimental methods [3].

QST merges methods of classic toxicology with systems

biology modeling and quantitative measurements of

molecular and functional changes occurring upon drug

treatment at different levels of biological organization

(cell, tissue, organ, organism) [2]. QST approaches have

proven useful to optimize dose and schedule drug regi-

mens, potentially minimizing costly phase I/II clinical

trials [4,5]. By integrating in vitro cell toxicity data with

multiscale in silico modeling of drug exposure, QST

models could become an efficient tool to assess and

predict drug toxicity [3]. Moreover, a better understand-

ing of biological responses to drugs will reduce uncer-

tainties in species extrapolations, and allow the prediction

of treatment responses considering the patient genetic

variability or pre-existing diseases.

The present review is focused on presenting and discuss-

ing the recent advancements in computational methods

used in QSP and QST, which support three crucial

aspects of the drug development process: firstly, the

understanding and prediction of drug pharmacokinetics,

secondly, the understanding and prediction of drug tox-

icity, and thirdly, the translational perspective of the pre-

clinical assessment.

Physiologically based pharmacokinetic
models
Physiologically based pharmacokinetic and pharmacody-

namic (PBPK/PD) modeling has become a widely

adopted tool in the industry to obtain a quantitative

characterization of concentration–time profiles in differ-

ent organ and tissues across human populations. A recent

survey showed that around 70% of pharmaceutical com-

panies use pre-clinical PBPK/PD modeling in all thera-

peutic areas [6]. The wide adoption of these modeling

approaches has been facilitated by the availability of

several PBPK commercial platforms [7], and by recom-

mendation of regulatory agencies [8]. The main goal of

PBPK modeling is to describe drug absorption, distribu-

tion, metabolism and elimination (ADME) within the

body. The prediction of drug exposure in plasma but

especially in the site of action of the drug is of high

pharmacological relevance, because drug concentration in

certain body compartments may be difficult or impossible

to be experimentally measured [7]. State of the art PBPK/

PD models are composed of hundreds of ordinary differ-

ential equations (ODEs) describing physiological pro-

cesses involved in ADME. The parameters in the model

are obtained from prior knowledge available in the liter-

ature or calculated from specific and carefully validated

formulas [7]. Although the primary focus of a PBPK

model is on physiological variables, biochemical informa-

tion is considered for drug transporters and metabolic

enzymes, which play a role in drug transport and

metabolism.

PBPK models have been used to represent particular

disease states or specific patient groups, such as pediatric

patients or pregnant women [9] as well as to predict drug-
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drug interactions [10–16], food-drug interactions [17–19],

drug formulation effects [20,21], cross-species extrapola-

tion [22–24], and constitute key components of multiscale

models [25��].

PBPK models can be combined with transcriptomics data

to investigate mechanisms of drug toxicity [26�,27] and

carcinogenicity [28]. Furthermore, PBPK models can be

expanded by adding mechanistic models of gene regula-

tion and signaling pathways. For instance, a PBPK model

was coupled with the miRNA-BDNF pathway to study

perfluorooctanesulfonic acid induced neurotoxicity [29].

In another study, Mason et al. combined PK and mecha-

nistic models to estimate the dose and time of ingestion in

paracetamol poisoning, using traditional and experimen-

tal serum biomarkers in mice [30�].

Although PBPK models are widely used for the prediction

of ADME, other types of modeling approaches are

required to gain insight on the mode of action of com-

pounds, especially at the cellular level.

Toxicogenomics data analysis
The use of transcriptomics to characterize the cell

response to a particular compound is widely applied in

both QSP and QST. DNA microarray technologies have

allowed monitoring the changes of the expression levels

of thousands of genes simultaneously after the exposure

to a given drug, setting the foundations for the field of

toxicogenomics. The most popular resources for toxico-

genomics are summarized in Box 1. One of the challenges

in the field is how to translate changes in gene expression

into actionable information for understanding the biolog-

ical mechanism of toxicity of drugs. To address this

challenge, several approaches have been proposed,

including the analysis of gene signatures, gene set enrich-

ment analysis, and gene co-expression networks.

Gene signature analysis

Gene signatures analysis aims at obtaining a minimal list

of genes that can be used to predict the toxic response to a

compound. The underlying assumption is that com-

pounds with similar mechanisms of action will have

similar gene expression profiles, and that these gene

expression profiles can be used to build gene expression

signatures predictive of drug toxicity. A variety of meth-

odologies have been proposed to identify these gene

signatures. Among them, Connectivity Map-like analysis

[31] aims at detecting similarities among gene expression

signatures of different compounds using pattern-match-

ing algorithms. This method has been successfully used

to group chemicals based on their mode of action [32], to

select potential new drug candidates for several cancer

types [33], to characterize genes involved in the cell

response to different chemicals by means of different

features, such as evolution, topological properties in a

protein interaction network and disease SNP density [34],

and by integrative analysis with chemical structures and

drug sensitivity data, to improve drug taxonomy and

provide a comprehensive picture of drug-drug relation-

ships [35�].

Another type of methods uses machine-learning techni-

ques to derive the gene signatures. For example, Rempel

et al. obtained a classifier that allows to separate histone

deacetylase inhibitors from mercurials using human

embryonic stem cells, thus demonstrating that the system

is suitable for toxicant classification [36] and Giordano et al.
used different machine-learning approaches to derive gene

signatures from whole blood gene expression data to pre-

dict cigarette smoke exposure in humans [37] (Box 2).
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Box 1 Glossary of terms or abbreviations

ADME: drug absorption, distribution, metabolism and elimination

DILI: Drug-Induced Liver Injury

DTNI: Dose-Time Network Identification

ILP: Integer Linear Programming

GEO: Gene Expression Omnibus

GSEA: Gene Set Enrichment Analysis

GSMN: Genome Scale Metabolic Networks

ODE: Ordinary Differential Equations

ORd: O’Hara–Rudy dynamic cardiac ventricular model

PBPK/PD: Physiologically based pharmacokinetic/

pharmacodynamics

QSP: Quantitative Systems Pharmacology

QST: Quantitative Systems Toxicology

WGCNA: Weighted Gene Co-expression Network Analysis

Box 2 Toxicogenomics data resources

One of the most commonly used resources in QSP and QST analysis

is open access TG-GATEs database [115]. This resource contains

toxicogenomics data for 170 compounds, in human and rat primary

hepatocytes, linked to phenotype data and pathology findings. The

US Broad Institute Connectivity Map [116,117] contains thousands of

gene expression profiles of most FDA approved drugs tested in

multiple cell types. It has been used for identifying modes of action

and defining biologically similar compounds. The US National Cancer

Institute (NCI) 60 tumor cell line screen includes results on GI50 (50%

growth inhibition), total growth inhibition (TGI), and LC50 (50% lethal

concentration) for many compounds tested in the major Connectivity

Map cell lines [118]. The Library of Integrated Network-based Cel-

lular Signatures (LINCS) catalogs how cells respond to different

types of perturbations using a variety of assays [119]. The Chemical

Effects in Biological Systems (CEBS) database is a toxicology

resource containing animal data from the National Toxicology Pro-

gram (NTP) testing program and other depositors. CEBS currently

covers over 8000 studies including carcinogenicity, short-term toxi-

city and genetic toxicity studies [120].
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