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HIGHLIGHTS

e Decomposing the change of CO, emissions by a joint production theoretical method.
¢ [solating both the GDP composition and energy supply composition change effects.
e Identifying the different input ratio changes effect on change of CO, emissions.

¢ Finding the economic growth is the crucial driver to the CO, emissions increase.

e GDP composition and capital-energy ratio have great effect on emissions reduction.
® Proposing some policy implications for China from an international perspective.
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This paper presents an alternative decomposition method to explore the driving forces of change in
carbon emissions by using distance functions estimated by data envelopment analysis. The proposed
approach can isolate the effects of changes in GDP composition and energy supply composition on the
change of carbon emissions. In addition, it is capable of identifying the effects of changes in different
input ratios, which may be very important if there are substitution effects among different inputs.
Moreover, the proposed model can measure the effects of changes in good and bad output technical
efficiencies. Consequently, this decomposition technique allows a change of carbon emissions to be
decomposed into contributions from ten factors, which provides more insights for policy makers.
We apply this model to decompose carbon emissions in 25 OECD counties and China. For the sample
countries as a whole, the empirical results indicate that the economic growth is the crucial driver to
carbon emissions increase, while the changes in GDP composition and capital-energy ratio are two main
drivers to carbon emissions reduction. In particular, we discuss in detail the driving forces of China's
carbon emissions change in order to propose some valuable policy implications for China from an
international perspective.
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1. Introduction annually in many countries. Rose and Casler (1996) review

previous SDA literature and summarize the SDA's features. Peng

Global warming, which is mainly contributed to by carbon
emissions, has gained increasing attention in recent years. Many
researchers devote themselves to studying the driving factors that
affect change of aggregate carbon emissions based on a variety of
decomposition methods. There are two widely used decomposi-
tion approaches, namely the structural decomposition analysis
(SDA) and index decomposition analysis (IDA).

SDA is based on the input-output model in quantitative
economics, and usually requires input/output (I/O) tables from
more than one year. However, 1/O tables are not constructed
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and Shi (2011) and Chang Yih et al. (2008) use SDA to analyze CO,
emissions in China. IDA uses an index number framework and
requires only sector level data. In addition, both multiplicative and
additive decompositions are adopted in IDA, while only the
additive decomposition can be applied in SDA. Therefore, IDA is
a widely accepted decomposition technique to decompose carbon
emissions, such as Ang et al. (1998), Ang and Liu (2001), Wang
et al. (2005), Lee and Oh (2006), Liu et al. (2007), Hatzigeorgiou
et al. (2008), Tung et al. (2009), Zhang et al. (2009), and Zha et al.
(2010). Ang and Zhang (2000) survey the IDA literature and
provide the methodology, and Hoekstra and van den Bergh
(2003) compare SDA with IDA in detail.

Several researchers have recently developed methodologies to
decompose the change of undesirable outputs by combining
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decomposition analysis with distance functions estimated by data
envelopment analysis (DEA). Zhou and Ang (2008) call this
decomposition technique the production theoretical decomposi-
tion analysis (PDA) since it is conducted in production theory
framework. Compared with IDA/SDA, PDA allows separate assess-
ment of technical efficiency change effect and technological
change effect based on the measure of production technology.
PDA therefore is a significant decomposition technique since it
yields more insights into the influence of production technologies
which implies more explicit policy suggestions. In addition, PDA
uses panel data which are easy to collect. Those applications of
PDA differ mainly in the way that technology scales on outputs
and inputs. Assuming an output based on radial measure which
scales on good and bad outputs symmetrically, Pasurka (2006)
applies Shephard output distance functions to decompose the
change of NO, and SO, emissions from U.S. coal-fired power plants
into technical efficiency change, technical change, growth of fuel
and non-fuel inputs, and changes in the mix of good and bad
outputs. Zhou and Ang (2008) distinguish the category of technol-
ogy into carbon emissions technology and the energy-usage
technology, and apply two Shephard input distance functions for
input and undesirable output respectively. Consequently, the
components driving the change in CO, emissions are decomposed
into contributions from seven factors: carbon factor change,
energy intensity change, GDP change, CO, emissions technical
efficiency change, carbon abatement technology change, energy
usage technical efficiency change, and energy savings technology
change. Zhang et al. (2012) extend Zhou and Ang (2008) by
introducing Shephard output distance functions for good output.
Thus, two additional contributors to the change of carbon emis-
sions, the good output technical efficiency change and good output
technical change, are taken into account. However, those decom-
position models do not measure the structure effects, which have
been regarded as important factors in explaining changes in
carbon emissions.

Kim and Kim (2012) assess productive efficiency through a
Shephard input distance function for the single input of energy
consumption, and impose the logarithmic mean Divisia index
method (LMDI) to measure the changes in energy mix and
industrial structure as well as the change in production technol-
ogy. Consequently, Kim and Kim (2012) decompose the change of
CO, emissions into seven components: CO, emission factor effect,
energy mix effect, potential energy intensity effect, structural
effect, economic activity effect, energy usage efficiency effect,
energy saving technical change effect. Based on the homogenous
properties of output distance function when the production
technology is constant-returns-to-scale (CRS), Wang (2007) and
Li (2010) introduce the effects of industrial structure and energy
mix into the proposal decomposition model by using the general-
ized Fisher index approach proposed by Ang et al (2004). By using
Shephard output distance functions, Wang (2007) proposes a
model to decompose the energy productivity changes into six
components: output technical efficiency change, output technical
change, change in capital-energy ratio, change in labor-energy
ratio, change in energy supply composition, and change in output
composition. Therefore, the model proposed by Wang (2007) takes
into account the changes in industrial and energy supply structure
effects and the ratios of different inputs. However, because of
unavailability of the data, Wang (2007) cannot quantify the effects
of the change in the composition of national output in the
empirical analysis. Li (2010) decomposes the change of carbon
emissions into seven contributors: economic growth, good output
technical efficiency change, good output technical change effect,
change in capital-carbon ratio, change in labor-carbon ratio,
change in energy-carbon ratio, and the GDP composition effect.
Li (2010) introduces the effect of change in industrial structure as

that of Wang (2007). Li (2010) introduces the changes in different
input-carbon ratios (changes in the capital-carbon ratio, labor-
carbon ratio, and energy-carbon ratio) instead of different inputs
ratios (changes in the capital-energy ratio, and labor-energy
ratio), which are introduced in Wang (2007). The common
characteristic in these two papers is that they assess productive
efficiency through output distance function for desirable output
subvector.

Based on Wang (2007) and Li (2010), we distinguish the
category of technology into good output technology and bad output
technology, and present an alternative PDA approach in this paper.
The proposed decomposition technique allows a change of CO,
emissions to be decomposed into contributions from ten factors,
which can be classified into five categories: (1) changes in structure,
including industrial structure change and energy supply structure
change; (2) changes in different input ratios, including the changes
in capital-energy ratio and labor-energy ratio, which may be very
important if there are substitution effects among different inputs;
(3) changes in technical efficiency, including carbon emissions
technical efficiency change and desirable output technical efficiency
change; (4) technical change, including carbon emissions technical
change and desirable output technical change; and (5) the effect of
economic growth.

We focus on an application using data from 25 OECD countries
and China. In the past three decades, China has witnessed a
significant rise in economic growth, and it has made great progress
in the productivity and technical levels. Moreover, China has been
the largest energy-related CO, emitter in the world, although the
carbon emission per capita is very low. Therefore, another highlight
of this paper is to investigate the driving forces affecting China's
carbon emissions change in an international perspective, and the
empirical results may imply some valuable policy implications for
China to reduce its carbon emissions.

The remainder of this paper is organized as follows. Section 2
proposes a decomposition approach for carbon emissions. In Section
3, we apply this approach to decompose the change of carbon
emissions in 26 countries. Section 4 presents policy recommenda-
tions for China. Section 5 concludes this study.

2. Methodology
2.1. Decomposition model

We consider a production process including two outputs and
three inputs. The two outputs are a desirable output of gross
domestic product (Y) and an undesirable one of CO, emissions (C),
and capital stock (K), labor force (L) and energy (E) are the three
inputs. The production technology at any time t is described by the
following set:

St ={K", L E',C", YY) (K', L', E") can produce (C', Y5} (1)

S' satisfies the standard properties of the production set. S* is a
closed set, which implies that finite amounts of inputs can only
produce finite amounts of outputs. Inputs and desirable outputs
are strong disposability, that is, if (K',L',E',C", Y)eS" and
Kt Lt EYy> (K LLEY (or Yt<Y'), then (K't,L'*t E* C'YHeS'
(or (K', L' E',C", Y'*)eS") (see Fire and Primont (1995)). Joint out-
puts (good and bad outputs) are weakly disposable, which means
that it is feasible to reduce good and bad outputs proportionally.
That is, if (K. L' E',C' YHeS' and 0<p<l1, then (K' L' E',pC,
pYHeS'. Joint outputs (good and bad outputs) are nulljoint, i.e.,
if (KL E',C', YHeS' and C'=0, then Y'=0. It is technically
(or economically) impossible to produce the good outputs without
simultaneously producing some bad outputs (for more, see Fire
et al. (2004)).
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