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Abstract

Over the past twenty years, damped trend exponential smoothing has performed well in numerous empirical studies, and it is
now well established as an accurate forecasting method. The original motivation for this method was intuitively appealing, but
said very little about why or when it provided an optimal approach. The aim of this paper is to provide a theoretical rationale for
the damped trend method based on Brown’s original thinking about the form of underlying models for exponential smoothing.
We develop a random coefficient state space model for which damped trend smoothing provides an optimal approach, and
within which the damping parameter can be interpreted directly as a measure of the persistence of the linear trend.
c© 2009 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In a series of three papers (Gardner & McKenzie,
1985, 1988, 1989), we developed new versions of the
Holt–Winters (Holt, 2004; Winters, 1960) methods of
exponential smoothing that damp the trend as the fore-
cast horizon increases. Since those papers appeared,
damped trend exponential smoothing has performed
well in numerous empirical studies, as discussed by
Gardner (2006). In a review of evidence-based fore-
casting, Armstrong (2006) recommended the damped
trend as a well established forecasting method that
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should improve accuracy in practical applications. In
a review of forecasting in operational research, Fildes,
Nikolopous, Crone, and Syntetos (2008) concluded
that the damped trend can “reasonably claim to be a
benchmark forecasting method for all others to beat”.
Additional empirical evidence using the M3 compe-
tition data (Makridakis & Hibon, 2000) is given by,
Hyndman, Koehler, Ord, and Snyder (HKOS) (2008),
who found that the use of the damped trend method
alone compared favourably to model selection via in-
formation criteria.

Despite this record of empirical success, we still
have no compelling rationale for the damped trend.
Our original approach was pragmatic, based on the
findings of the M-competition (Makridakis et al.,
1982), which showed that the practice of projecting
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a straight line trend into the future indefinitely was
often too optimistic (or pessimistic). Thus, we added
an autoregressive-damping parameter (φ) to modify
the trend component in Holt’s linear trend method.
The result is a method which is stationary in first
differences, rather than in second differences as is the
case for Holt’s method. If there is a strong, consistent
trend in the data, we hypothesized that φ would be
fitted at a value near 1, and the forecasts would be very
nearly the same as Holt’s; if the data are extremely
noisy or if the trend is erratic, φ would be fitted at a
value less than 1 to create a damped forecast function.
This explanation may be intuitively appealing, but it
says nothing about when trend damping is the optimal
forecasting approach.

The aim of this paper is to provide a theoretical
rationale for the damped trend based on Brown’s
(1963) original thinking about the form of underlying
models for exponential smoothing. His preference was
for processes that are thought to be locally constant.
Brown argued that although the parameters of the
model may be constant within any local segment of
time, they may change from one segment to the next,
and the changes may be either sudden or smooth. We
present a new model for the damped trend method that
accommodates both types of change. Interestingly,
our interpretation of this model essentially reverses
our original thinking on the use of damped trend
forecasting in practice.

2. A modelling viewpoint

Our development is based on the class of single
source of error (SSOE) state space models (HKOS).
We begin with the model for a linear trend with
additive errors:

yt = `t−1 + bt−1 + εt (1)

`t = `t−1 + bt−1 + (1− α)εt (2)

bt = bt−1 + (1− β)εt , (3)

where {yt } is the observed series, {`t } is its level and
{bt } is the gradient of its linear trend. This model
has a single source of error {εt }, hence the name.
We note that what we have to say here still applies
even if we consider models with multiple sources of
error. Compared to the presentation in HKOS, we have
written the coefficients of the innovations in the level
(2) and gradient (3) revision equations in a slightly

unusual way to simplify some of the results which
follow. The model (Eqs. (1)–(3)) has a reduced form
as the ARIMA(0, 2, 2):

(1− B)2 yt = εt − (α + β)εt−1 + αεt−2. (4)

The two models are equivalent, but the state space
expression is easier to interpret, especially when
the parameters take on extreme values. The usual
minimum mean square error (MMSE) forecasts of this
model can be generated using the recursive formulae
of Holt.

To damp the trend component in Eqs. (1)–(3), we
incorporate an autoregressive-damping parameter φ to
create another SSOE model:

yt = `t−1 + φbt−1 + εt (5)

`t = `t−1 + φbt−1 + (1− α)εt (6)

bt = φbt−1 + (1− β)εt . (7)

This model (Eqs. (5)–(7)) has a reduced form as the
ARIMA(1, 1, 2):

(1− φB)(1− B)yt = εt − (α + φβ)εt−1

+φαεt−2. (8)

Note that the gradient revision equation (7) is an
AR(1) rather than the random walk form used in Eq.
(3). Thus, revision equation (7) allows the gradient to
change, but in a stationary way, whereas in Eq. (3)
such changes are non-stationary and the longer-term
behaviour is quite different.

In Eqs. (5)–(7), we can interpret φ as a direct
measure of the persistence of the linear trend. With
φ close to 1, the linear trend is highly persistent, but
values of φ moving away from 1 toward zero indicates
weaker persistence. And, of course, φ = 0 would
indicate the complete absence of any linear trend.

Now we recall Brown’s idea of a locally constant
model and apply it to the gradient of the linear trend.
For the model in Eqs. (1)–(3), this means that the usual
random walk form of the gradient revision equation
(3) holds for a while, but then the gradient changes to
a new value, which holds for a while, and then changes
again, and so on. Thus, we have runs of the linear
trend model given by Eqs. (1)–(3), but each run ends
when the gradient revision equation (3) restarts with
a new gradient. Such behaviour may be modelled by
rewriting the gradient revision equation in the form

bt = At bt−1 + (1− β)εt , (9)
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