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Abstract

Forecasts from regression models are frequently made conditional on a set of values for the regressor variables. We
describe and illustrate how to obtain forecasts when some of those regressors are stochastic and their values have not yet been
realized. The forecasting device is a Bayesian predictive density which accommodates variability from an unknown error term,
uncertainty from unknown coefficients, and uncertainty from unknown stochastic regressors. We illustrate how the predictive
density of a forecast changes as more regressors are observed and therefore fewer are unobserved. An example where the local-
area wheat yield depends on the rainfall during three periods – germination, growing and flowering – is used to illustrate the
methods. Both a noninformative prior and a prior with inequality restrictions on the regression coefficients are considered. The
results show how the predictive density changes as more rainfall information becomes available.
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1. Introduction

The linear regression model is a common vehicle
for forecasting future values of economic variables.
In the traditional textbook treatment of linear-model
forecasting (see, e.g., Wooldridge, 2009, p. 208),
future values of a dependent variable are predicted for
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given values of the explanatory variables (regressors).
Expressions for both point and interval forecasts are
obtained, with the interval forecasts using a standard
error that reflects both uncertainty about the future
value of the error terms and the sampling error from
estimating the coefficients. A major simplification
implicit in this treatment is the assumption that future
values of the regressors are known. Because the
analysis conditions on these values, any uncertainty
attached to them is ignored in the construction of
interval forecasts. This limitation is not a serious
one if the regressors are all policy variables whose
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values are set by a decision maker. For example, a
retail store investigating sales of its product might set
different prices and use different advertising strategies.
However, there are many circumstances where some if
not all of the future values of the explanatory variables
are not known with certainty. Retail store sales might
also depend on the weather or the behaviour of
competitors, neither of which can be predicted with
certainty. When there is a lack of knowledge about
the future values of stochastic regressors, forecasts
should have forecast intervals that reflect this lack
of knowledge: the intervals should be wider than
traditional intervals that condition on known values of
the regressors.

In the sampling-theory literature there is general
recognition that independent forecasts of stochastic
regressors need to be provided, but there does not
seem to be a unified framework for incorporating the
consequent uncertainty into forecast intervals. McCul-
lough (1996) makes some progress in this direction:
he suggests using the bootstrap to obtain consistent
forecast intervals, overcoming an inconsistency de-
scribed by Feldstein (1971). Various approaches to ob-
taining forecast intervals for a range of models have
been reviewed by Chatfield (1993). Lam and Veall
(2002) illustrate the inaccuracy of normal-distribution
based forecast intervals when the errors are non-
normal. Bayesian inference, in contrast to the different
sampling-theory approaches, provides a single unified
framework for obtaining point and interval forecasts
that reflect all sources of uncertainty. The Bayesian
tool that incorporates the different sources of uncer-
tainty is the predictive density function. This density
function is the probability density function (pdf) for
future values of the variable of interest, conditional
only on past observables. It is obtained by forming
the joint density function for all unobservables, in-
cluding the regression coefficients, the future values
of stochastic regressors, and future values of the de-
pendent variable, all conditional on past observations,
and then integrating out all unknowns with the excep-
tion of the forecast variable. The marginal pdf that
results is the predictive density function; integrating
out the other unobservables, rather than conditioning
on them or their estimates, means that the predictive
pdf reflects the uncertainty associated with the unob-
servables. Once the predictive pdf has been obtained,
information from it can be presented in a number of

ways. For point forecasts it is common to assume im-
plicitly that a quadratic loss function is appropriate,
in which case the mean of the predictive density is
taken as the optimal point forecast. The reliability of
that forecast, or a general idea of the uncertainty of
any forecast, can be obtained by presenting a graph of
the pdf, a measure of its dispersion such as the stan-
dard deviation, or a forecast interval. The forecast in-
terval has a similar interpretation to a sampling-theory
forecast interval, but it accommodates all sources of
uncertainty, and may be influenced by prior informa-
tion placed on the parameters of the regression model.
Moreover, inferences from the predictive density are
finite sample inferences. Asymptotic approximations
are not necessary, as is typically the case with sam-
pling theory inferences in models of similar levels of
complexity.

The objective of this paper is to describe and il-
lustrate how to obtain a predictive pdf for a linear
or non-linear regression model with stochastic regres-
sors. Two types of prior information are considered.
One is a noninformative prior where past sample in-
formation dominates both the resulting posterior den-
sity for the coefficients and the predictive density. The
other prior is an inequality-restricted prior, where the
coefficients are assumed to lie within a restricted re-
gion, but the prior is noninformative otherwise. The
latter prior is an important one in economics, as eco-
nomic theory often dictates sign restrictions, as well as
more complex inequalities on regression coefficients;
see for example Barnett and Serletis (2008) and Grif-
fiths, O’Donnell and Tan-Cruz (2000).

As far as we are aware, a predictive density
which incorporates both inequality information on the
coefficients and uncertainty from stochastic regressors
has not previously been considered in the literature.
Zellner and Park (1987) derive the predictive pdf under
the assumption that the dependent and independent
variables follow a multivariate normal distribution.
They also derive expressions for the moments of
the predictive pdf when the normality assumption
is relaxed. Knight, Sirmans, Gelfand and Ghosh
(1998) show how to use the Gibbs sampler to
generate observations from the posterior pdf for linear
regression coefficients and for any missing sample
observations on the regressors. They mention that
their methodology can readily be extended to the case
where the dependent variable is unobserved and the
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