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Abstract

We consider the simultaneous monitoring of a large number of spatially localized time series in order to detect emerging
spatial patterns. For example, in disease surveillance, we detect emerging outbreaks by monitoring electronically available
public health data, e.g. aggregate daily counts of Emergency Department visits. We propose a two-step approach based on the
expectation-based scan statistic: we first compute the expected count for each recent day for each spatial location, then find
spatial regions (groups of nearby locations) where the recent counts are significantly higher than expected. By aggregating
information across multiple time series rather than monitoring each series separately, we can improve the timeliness, accuracy,
and spatial resolution of detection. We evaluate several variants of the expectation-based scan statistic on the disease surveillance
task (using synthetic outbreaks injected into real-world hospital Emergency Department data), and draw conclusions about
which models and methods are most appropriate for which surveillance tasks.
c© 2008 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Many applications require the monitoring of time
series data in order to detect anomalous counts. A
traditional application of time series monitoring is the
use of statistical process control to ensure consistency
in manufacturing: the process is measured regularly
to ensure that the desired specifications (e.g. product
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size and weight) remain within an acceptable range.
More recently, time series monitoring has been
used in a variety of event detection systems: crime
surveillance systems (Gorr & Harries, 2003; Levine,
1999) detect emerging hot-spots of crime activity,
disease surveillance systems (Sabhnani et al., 2005)
monitor electronic public health data such as hospital
visits and medication sales in order to detect
emerging outbreaks, and environmental monitoring
systems (Ailamaki, Faloutsos, Fischbeck, Small, &
VanBriesen, 2003) detect abnormally high pollutant
levels in the air, water, and soil.
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In all of these event detection applications,
we wish to detect emerging spatial patterns as
quickly and accurately as possible, enabling a timely
and appropriate response to the detected events.
As a concrete example, we focus on the task
of detecting outbreaks of respiratory illness using
hospital Emergency Department (ED) data. In this
case, we can monitor the number of patients visiting
the ED with respiratory symptoms in each zip code
on each day. Each zip code si has a corresponding
time series of daily counts ct

i , and our goal is to detect
anomalous increases in counts that correspond to an
emerging outbreak of disease.

A variety of methods have been developed
to monitor time series data and detect emerging
anomalies. Control chart methods (Shewhart, 1931)
compare each observed count to its expected value
(a counterfactual forecast obtained from time series
analysis of the historical data), and detect any
observations outside a critical range. Cumulative sum
methods (Page, 1954) and tracking signals (Brown,
1959; Trigg, 1964) aggregate these deviations across
multiple time steps in order to detect shifts in a
process mean. When extending these techniques to
the simultaneous monitoring of multiple time series,
we have several options (Burkom, Murphy, Coberly,
& Hurt-Mullen, 2005). In the simplest, “parallel
monitoring” approach, we monitor each time series
separately and report any anomalous values. In the
“consensus monitoring” approach, we combine the
signals from multiple time series in order to achieve
higher detection power. To detect anomalies that
affect multiple time series simultaneously, we can
either combine the outputs of multiple univariate
detectors or treat the multiple time series as a single
multivariate quantity to be monitored. For example,
multivariate control charts (Hotelling, 1947) learn the
joint distribution of a set of signals from historical
data, and detect when the current multivariate signal
is sufficiently far from its expectation.

We note, however, that none of these time series
monitoring methods account for the spatial nature
of the event detection problem. We expect events
to be localized in space: if a given location is
affected by the event, nearby locations are more
likely to be affected than locations that are spatially
distant. For example, disease outbreaks tend to affect
spatially contiguous areas, either because of contagion

(e.g. human-to-human transmission) or because the
cases share a common source (e.g. contaminated
drinking water). Thus, we must consider alternate
methods of monitoring spatial time series data, where
we expect anomalies to affect the time series for some
spatially localized subset of locations.

A typical approach to the monitoring of spatial
time series data uses “fixed partitions”: we map the
locations to a Euclidean space (e.g. using the longitude
and latitude of each zip code centroid), partition the
search space such that each location is contained
in exactly one partition, and aggregate the counts
for each partition into a single time series. We then
monitor the time series for each partition separately,
and report any anomalous counts. One challenge is
deciding how to partition the search space: in the case
of zip code level data, we could consider each zip code
to be a separate partition, combine multiple adjacent
zip codes in a single partition, or even aggregate all of
the zip codes into a single time series. An alternative
is to form an “ad-hoc partitioning” by identifying
individual locations with high counts and using some
heuristic to cluster these locations (Corcoran, Wilson,
& Ware, 2003).

Any choice of partitioning scheme creates a set
of potential problems, which we call the “curse
of fixed partitions”. In general, we do not have a
priori knowledge of how many locations will be
affected by an event, and we wish to maintain high
detection power whether the event affects a single
location, all locations, or anything in between. A
coarse partitioning of the search space will lose power
to detect events that affect a small number of locations,
since the anomalous time series will be aggregated
with other counts that are not anomalous. A fine
partitioning of the search space will lose power to
detect events that affect many locations, since only a
small number of anomalous time series are considered
in each partition. Partitions of intermediate size will
lose some power to detect both very small and very
large events. Moreover, even if the partition size
corresponds well to the event size, the fixed partition
approach will lose power if the affected set of locations
is divided between multiple partitions rather than
corresponding to a single partition. While ad-hoc
partitioning methods allow partitions to vary in size,
the chosen set of partitions still may not correspond to
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