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a b s t r a c t

This paper compares two single-equation approaches from the recent nowcasting litera-
ture:mixed-data sampling (MIDAS) regressions and bridge equations. Both approaches are
suitable for nowcasting low-frequency variables such as the quarterly GDP using higher-
frequency business cycle indicators. Three differences between the approaches are identi-
fied: (1) MIDAS is a direct multi-step nowcasting tool, whereas bridge equations provide
iterated forecasts; (2) the weighting of high-frequency predictor observations in MIDAS is
based on functional lag polynomials, whereas the bridge equation weights are fixed partly
by time aggregation; (3) for parameter estimation, the MIDAS equations consider current-
quarter leads of high-frequency indicators, whereas bridge equations typically do not. To
assist in discussing the differences between the approaches in isolation, intermediate spec-
ifications between MIDAS and bridge equations are provided. The alternative models are
compared in an empirical application to nowcasting GDP growth in the Euro area, given a
large set of business cycle indicators.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

In policy institutions such as central banks, now-
casting GDP growth is an important way of informing
decision makers about the current state of the economy.
Nowcasting models typically consider specific data irregu-
larities: whereas GDP is sampled at a quarterly frequency
andonlywith a considerable delay,manybusiness cycle in-
dicators are available at higher frequencies and in a more
timely fashion; for example,monthly industrial production
or high-frequency financial data. Policy analysts want to
exploit this data for nowcasting in the most efficient way
possible without a loss of information. Thus, methods for
nowcasting should be able to tackle these data irregulari-
ties. This paper compares two single-equation approaches
for nowcasting: (1) Mixed-data sampling (MIDAS) regres-
sions and (2) bridge equations.
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In MIDAS regressions, the observations of the low-
frequency variable are related directly to lagged high-
frequency observations of the predictors without time
aggregation. If the differences in sampling frequencies are
huge, functional lag polynomials are employed in order to
ensure that the number of parameters to be estimated re-
mains small. In this case, non-linear least squares (NLS)
is used for parameter estimation, as outlined by Ghysels,
Sinko, and Valkanov (2007). If the difference in sampling
frequencies between the explained low-frequency vari-
able and the high-frequency predictors is not too large
(for example, given quarterly and monthly data), unre-
stricted linear polynomials have been considered in the
literature as well, by Foroni, Marcellino, and Schumacher
(2015). These polynomials can be estimated by ordinary
least squares (OLS). Whereas MIDAS has been used ini-
tially for financial applications, by Ghysels, Santa-Clara,
and Valkanov (2005, 2006) for example, it has been em-
ployed recently in many applications as a macroeconomic
forecasting tool for quarterly GDP, starting with Clements
and Galvão (2008, 2009). Recent contributions include
those of Andreou, Ghysels, and Kourtellos (2013), Duarte

http://dx.doi.org/10.1016/j.ijforecast.2015.07.004
0169-2070/© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ijforecast.2015.07.004
http://www.elsevier.com/locate/ijforecast
http://www.elsevier.com/locate/ijforecast
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijforecast.2015.07.004&domain=pdf
mailto:christian.schumacher@bundesbank.de
http://dx.doi.org/10.1016/j.ijforecast.2015.07.004


258 C. Schumacher / International Journal of Forecasting 32 (2016) 257–270

(2014), Drechsel and Scheufele (2012a), Ferrara, Marsilli,
and Ortega (2014), Foroni et al. (2015), and Kuzin, Mar-
cellino, and Schumacher (2011), amongst others. Recent
surveys include those by Andreou, Ghysels, and Kourtellos
(2011) and Armesto, Engemann, and Owyang (2010).

Bridge equations are also dynamic, but the variables on
both sides of the equation are low-frequency variables. In
particular, for nowcasting the quarterly GDP, the explana-
tory variables on the right-hand side of the equation are
quarterly lags of the predictor. These quarterly observa-
tions are typically obtained from time aggregation of the
high-frequency observations of the predictor. The bridge
equations can be estimated by ordinary least squares (OLS).
Tomake nowcasts, the predictors are themselves predicted
using an additional high-frequency model, such as an
autoregressive (AR) model. The high-frequency forecasts
from thismodel are then aggregated over time to the quar-
terly frequency and plugged into the bridge equation. Due
to this simple estimation method and their transparency,
bridge equations are used widely in policy organizations,
and central banks in particular. Applications in the litera-
ture include those by Angelini, Camba-Mendez, Giannone,
Reichlin, and Rünstler (2011), Baffigi, Golinelli, and Pa-
rigi (2004), Bulligan, Golinelli, and Parigi (2010), Bulligan,
Marcellino, and Venditti (2015), Camacho, Perez-Quiros,
and Poncela (2014), Diron (2008), Foroni and Marcellino
(2013), Foroni and Marcellino (2014), Golinelli and Parigi
(2007), Hahn and Skudelny (2008), Ingenito and Trehan
(1996), and Rünstler et al. (2009), amongst others. Appli-
cations of bridge equations to nowcasting in central banks
are documented by ECB (2008), Bundesbank (2013), and
Bell, Co, Stone, andWallis (2014) from the Bank of England.

In this paper, the relationship between MIDAS and
bridge equations as nowcasting tools is investigated in
detail. In the literature, a few comparisons of the two
approaches can be found, see for example Foroni and
Marcellino (2013). This paper expands on this body of
literature by providing analytical results to explain the dif-
ferences betweenMIDAS and bridge equations. This is pos-
sible because MIDAS and bridge equations both belong
to the class of distributed-lag models extended to mixed-
frequency data. Three conceptual differences between the
two model classes are established. (1) In the applications
cited above, MIDAS is a direct multi-step forecasting tool,
whereas bridge equations are mostly based on iterated
multi-step forecasts from an additional high-frequency
model; see Bhansali (2002) for a discussion of direct ver-
sus iterative forecasting. (2) MIDAS employs an empirical
weighting of high-frequency predictor observations, often
based on functional lag polynomials, whereas bridge equa-
tions are based partly on fixed weights stemming from
statistical time-aggregation rules. The different weighting
schemes also imply different estimation methods, namely
OLS for bridge equations and unrestricted MIDAS polyno-
mials, but NLS for MIDAS equations based on non-linear
functional lag polynomials. (3) Finally, MIDAS can consider
current-quarter observations of the high-frequency indica-
tor in themixed-frequency equation,whereas bridge equa-
tions typically contain only contemporaneous or lagged
observations of the indicator.

To assess the influences of each of these differences,
an intermediate model between MIDAS and bridge equa-
tions, called iterative MIDAS (MIDAS-IT), is derived. This
approach differs from the bridge equation only in its use of
a different weighting scheme for the high-frequency ob-
servations on the right-hand side, and from standard MI-
DAS in its iterative solution of the model for nowcasting.
Further model variants arise from different assumptions
regarding leading terms of the indicators. Highlighting the
differences between the approaches could help practition-
ers in making modelling decisions in a class of regression-
based models for nowcasting with mixed-frequency data
that have been discussed mostly in isolation in the recent
literature.

To illustrate the differences betweenMIDAS and bridge
equations, the two are compared in an empirical nowcast-
ing exercise for Euro area GDP, where the evaluation pe-
riod covers the years following the Great Recession. The
predictor set comprises a large number of monthly indi-
cators. Different specifications of MIDAS and bridge equa-
tions with single indicators are evaluated.

The paper proceeds as follows: Section 2 describes the
MIDAS and bridge equations and how they can be used for
nowcasting. Section 3 provides the analytical comparison
of MIDAS and bridge equations, and discusses alternative
models that link the two core approaches. In Section 4, the
results of the empirical nowcasting exercise are discussed.
Section 5 concludes.

2. MIDAS and bridge equations for nowcasting

The focus in this paper is on quarterly GDP growth,
which is denoted as yt , where t is the quarterly time index
t = 1, 2, . . . , Ty, with Ty being the final quarter for which
GDP data are available. The aim is to nowcast or forecast
the GDP for period Ty + h, yielding a value for yTy+h with
horizon h = 1, . . . ,H quarters.

In this context, nowcasting means that, in a particu-
lar calendar month, GDP for the current quarter is not ob-
served. It can even be the case that GDP is available only
with a delay of two quarters. In April, for example, the
Euro area GDP is only available for the fourth quarter of the
previous year, and a nowcast for the second quarter GDP
requires h = 2. Typically, the GDP figure for the first quar-
ter is published in mid-May. Thus, if a decision-maker re-
quests an estimate of the current, namely second, quarter
GDP in April, the horizon has to be set sufficiently large.
Further information and details on nowcasting procedures
can be found in the survey by Banbura, Giannone, and Re-
ichlin (2011).

In this paper, for simplicity, it is assumed that the infor-
mation set for now- and forecasting includes one station-
ary monthly indicator xMt in addition to the available GDP
observations. The time index for monthly observations is
defined as a fraction of the low-frequency quarter accord-
ing to t = 1 − 2/3, 1 − 1/3, 1, 2 − 2/3, . . . , Tx − 1/3, Tx,
where Tx is the final month for which the indicator is avail-
able, as per Clements and Galvão (2008) and Ghysels et al.
(2007). Usually, Tx ≥ Ty holds, as monthly observations
for many relevant macroeconomic indicators are available
earlier than GDP observations for the current quarter. We
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