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a b s t r a c t

This paper derives the Best Linear Unbiased Predictor (BLUP) for a spatial nested error
components panel data model. This predictor is useful for panel data applications that
exhibit spatial dependence and a nested (hierarchical) structure. The predictor allows
for unbalancedness in the number of observations in the nested groups. One application
includes forecasting average housing prices located in a county nested in a state. When
deriving the BLUP, we take into account the spatial correlation across counties, as well as
the unbalancedness due to observing different numbers of counties nested in each state.
Ignoring the nested spatial structure leads to inefficiency and inferior forecasts. Using
Monte Carlo simulations, we show that our feasible predictor is better in root mean square
error performance than the usual fixed and random effects panel predictors which ignore
the spatial nested structure of the data.
© 2014 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Baltagi and Pirotte (2013) derive the Best Linear
Unbiased Predictor (BLUP) for a nested error components
panel data model that ignores the spatial correlation along
the cross-sectional units. They show that forecasting a
nested panel datamodel with a non-nested error structure
leads to forecasts with higher root mean square errors
(RMSE). This emphasizes the need to account for the
nested structure of the data when forecasting. However,
Baltagi and Pirotte (2013) did not consider possible spatial
autocorrelation in the data. That is done in this paper.
In fact, Baltagi and Pirotte (2010) emphasized that if
the spatial dimension is neglected, tests of hypotheses
using the usual panel data estimators like random effects
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(RE) and fixed effects (FE) estimators perform badly and
can lead to misleading inference. Accounting for spatial
dependence in forecasting using panel data has been
considered by Baltagi and Li (2004, 2006), who forecasted
sales of cigarette and liquor per capita for U.S. states
over time. However, these applications were for balanced
panels and had no nested structure for the data. Spatial
correlation arises in many examples, see Anselin (1988)
and LeSage and Pace (2009) for several examples and
a nice introduction to this literature. The structure of
the spatial dependence can be related to location and
distance, in both a geographical space and a more general
economic or social network space (see Anselin, Le Gallo, &
Jayet, 2008, Chap. 19). One application includes forecasting
average housing prices in a county nested in a state.
For this application, one has to account for the spatial
correlation across counties, as well as the unbalancedness
due to observing different numbers of counties nested
in each state.1 For a survey of panel data forecasting

1 It is important to note that this paper does not allow for
unbalancedness in the time dimension, but assumes that there are no
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that does not include spatial dependence, see Baltagi
(2008), and for spatial panel data forecasting that does not
account for the nested structure in the data, see Baltagi,
Bresson, and Pirotte (2012). The latter study considered
the case where the true Data Generating Process (DGP)
is random effects with a spatial autoregressive (SAR)
or a spatial moving average (SMA) remainder error.
Using Monte Carlo experiments, Baltagi et al. (2012)
find that estimators that ignore heterogeneity/spatial
autocorrelation perform badly in RMSE forecasts. Their
results also show that accounting for heterogeneity
improves the RMSE forecast performance by a big margin,
while accounting for spatial autocorrelation improves the
forecast performance by a smaller margin. Ignoring both
leads to the worst RMSE forecasting performance. Another
application is that of Longhi and Nijkamp (2007), who
obtain short-term forecasts of employment in a panel
of 326 West German regional labor markets observed
over the period 1987–2002. The authors find that taking
spatial autocorrelation into account by means of spatial
error models leads to forecasts that are, on average, more
reliable than those from models which neglect regional
spatial autocorrelation. Girardin and Kholodilin (2011)
obtain multi-step forecasts of the annual growth rates of
the real gross regional product (GRP) for a panel of 31
Chinese regions over the period 1979–2007. This is done
using a dynamic spatial panel model. They argue that
using panel data and accounting for spatial effects improve
the forecasting performance substantially compared to the
benchmark models estimated for each of the provinces
separately. They also find that accounting for spatial
dependence is evenmore pronounced at longer forecasting
horizons where the root mean squared forecast error
(RMSFE) improves from 8% at the 1-year horizon to over
25% at the 13- and 14-year horizons. They recommend
incorporating a spatial dependence structure into regional
forecastingmodels, especially when long-run forecasts are
made. Also, Kholodilin, Siliverstovs, and Kooths (2008)
consider a dynamic spatial panel model for forecasting
the GDP of 16 German Länder (states) over the period
1991–2006, at horizons varying from one to five years.
Using root mean squared forecast errors, they show that
accounting for spatial effects helps to improve the forecast
performance, especially at longer horizons. In fact, they
find that this gain in RMSFE is about 9% at the 1-year
horizon and exceeds 40% at the 5-year horizon.

This paper focuses on prediction and derives the Gold-
berger (1962) BLUP for a spatial nested error components
panel data model.2 Using Monte Carlo experiments, this
paper shows that this predictor performs well in terms of
out-of-sample rootmean square errors. Thepredictions are
based on the maximum likelihood estimator, which takes

missing observations across the sample period for all counties and states.
This is likely to be the case when forecasting the average price in a
county, but not when forecasting individual house prices. The latter most
probably exhibit unbalancedness in the time dimension, as not all house
prices are observed over the sample period.
2 While Baltagi and Li (2004) extend the BLUP to spatial panel models,

Song and Jung (2002) extend the BLUP to the case of spatially and serially
correlated error component models.

into account the special unbalanced aspect of the data, the
spatial autocorrelation and the nested structure of the dis-
turbances. The paper is organized as follows: in Section 2,
we derive the BLUP for the spatial nested random effects
model with the special unbalanced aspect of the data. Sec-
tion 3 describes the Monte Carlo design, while Section 4
describes theMonte Carlo results. Section 5 concludeswith
suggestions for further work.

2. The spatial nested error components model

Consider the unbalanced panel data regression model:

yijt = xijtβ + εijt , (1)

where i = 1, . . . ,N , j = 1, . . . ,Mi, and t = 1, . . . , T .
The dependent variable yijt could denote the average house
price in county j located in state i at time period t . xijt
is a (1 × K) vector of explanatory (exogenous) variables,
while β represents a (K × 1) vector of parameters to be
estimated. N denotes the number of states, andMi denotes
the number of counties in each state i. This model allows
for an unequal number of counties in each state i. However,
it does not allow for missing observations across time.
Moreover, in contrast to the usual panel data framework,
we allow εijt to be contemporaneously correlated. A simple
and widely used approach to modelling spatial error
dependence is to assume a SAR process:

εijt = ρ

N
g=1

Mg
h=1

wij,ghεght + uijt , (2)

where ρ is the autoregressive parameter to be estimated.
The weight wij,gh = wk,l is the (k, l) element of the matrix
WS , with ij denoting county j within state i, and similarly
for gh. Thus, k, l = 1, . . . , S, where S =

N
i=1 Mi andWS is

an (S × S) known spatial weights matrix which has zero
diagonal elements and is usually row-normalized so that
for row k,

N
g=1

Mg
h=1 wk,gh = 1. Typically, WS is defined

as first order contiguity; such elements consist of loca-
tion pairs that have a common border but no higher order
contiguity, or could be based on distances between coun-
ties. The error component structure of the disturbances uijt
contains an unobserved permanent unit-specific error
component αi, a nested permanent unit-specific error
component µij, and a remainder error component vijt .
More
formally,

uijt = αi + µij + vijt , (3)

where αi denotes an unobservable state-specific time-
invariant effect which is assumed to be i.i.d.N


0, σ 2

α


,

µij denotes the nested effect of county j within the ith
state which is assumed to be i.i.d.N


0, σ 2

µ


, and vijt is

a remainder disturbance term which is also assumed to
be i.i.d.N


0, σ 2

v


. The αis, µijs and vijts are independent

of each other and among themselves. In contrast to the
classical literature on panel data, grouping the data by
periods rather than by units is more convenient when we
consider the spatial autocorrelation due to Eq. (2). For a
cross-section t , the model in Eq. (1) can be written as:

yt = Xtβ + εt , (4)
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