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a b s t r a c t

This work focuses on developing a forecasting model for the water inflow at an
hydroelectric plant’s reservoir for operations planning. The planning horizon is 5 years in
monthly steps. Due to the complex behavior of the monthly inflow time series we use a
Bayesian dynamic linearmodel that incorporates seasonal and autoregressive components.
We also use climate variables like monthly precipitation, El Niño and other indices as
predictor variables when relevant. The Brazilian power system has 140 hydroelectric
plants. Based on geographical considerations, these plants are collated by basin and
classified into 15 groups that correspond to the major river basins, in order to reduce
the dimension of the problem. The model is then tested for these 15 groups. Each group
will have a different forecasting model that can best describe its unique seasonality and
characteristics. The results show that the forecasting approach taken in this paper produces
substantially better predictions than the current model adopted in Brazil (see Maceira &
Damazio, 2006), leading to superior operations planning.
© 2014 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

The available methods for hydrological forecasting fall
into two classes: conceptual (or physical) methods, which
correspond to the rainfall-runoff hydrological models, and
data-driven methods such as regression, time series, and
artificial neural networks models. Interest lies in either
forecasting river streamflow for water management and
flood control or forecasting natural inflow to hydropower
reservoir for operation and scheduling, with the latter
being the focus of this work.

The rainfall-runoff conceptual model is a hydrological
model that transforms rainfall (precipitation) into runoff
(streamflow) based on physical and empirical equations.
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The components involved in the transformation process
are evaporation, infiltration, interception, soil moisture,
land use, and various meteorological conditions, including
air temperature and solar radiation (Collisschonn, Allasia,
da Silva, & Tucci, 2007; Moradkhani, Hsu, Gupta, &
Sorooshian, 2004).

Since conceptual models rely on an accurate knowl-
edge of the physicalmechanisms of the underlying stream-
flow at a particular location, the data-driven techniques
gained more popularity in the field of hydrology over the
last decade (Wang, 2006). Data-driven models are defined
on the basis of connections between state variables (in-
put, internal and output), with little knowledge of the
physical behavior of the system (Solomatine, 2002) being
needed. Therefore, the forecasting procedure can easily be
extended and applied to different locations and conditions.
Examples of data-driven models are statistical models like
time series models and artificial neural networks.
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Themost popular univariate time seriesmodels applied
to inflow forecasting are the autoregressive moving
average (ARMA) models and their variants (Box & Jenkins,
1976). These are built on the assumption of stationarity,
that is, the statistical properties of the process are
not a function of time. (For a Bayesian perspective,
seeMarriott & Newbold, 1998, andWest, 2013). Therefore,
they are more commonly used for forecasting annual
streamflows. Streamflow series with time scales of less
than a year (e.g. monthly, quartely) usually exhibit
seasonality because the hydrologic phenomena vary from
one season to another. According to Hipel and McLeod
(1994) three types ofmodels can be applied to these series:
the seasonal autoregressive integrated moving average
(SARIMA), periodic ARMA (PARMA) and deseasonalized
ARMAmodels. The deseasonalized and periodicmodels are
used for describing data that possess stationarity within
each season (e.g. Chen, 1997; Maceira & Damazio, 2006;
Mondal &Wasimi, 2006; Yurekli, Kurunc, & Ozturk, 2005).
The SARIMA family of models can be fitted to data where
the level and perhaps other features change within each
season across the years (e.g. Bender & Simonovic, 1994;
Noakes, McLeod, & Hipel, 1985).

A more general class of regression models, the dy-
namic linear models (DLMs), have the capability to deal
with nonstationarity within a season (West & Harrison,
1997). Krishnaswamy, Halpin, and Richter (2001) intro-
duced aBayesiandynamic linear regressionmodel as a use-
ful tool for studying the dynamics of hydrology in systems
which are subject to high natural variability and land-use
change. The model was applied to the Terraba River basin
in the southern part of Costa Rica. Kumar andMaity (2008)
apply a Bayesian dynamic model to the Devil’s Lake basin,
located in North Dakota, USA. They claim that the major
strength of this type of model lies in its quantification of
predictionuncertainty, particularly under different climate
change scenarios.

Migon and Monteiro (1997) propose a dynamic non-
linear Bayesian model for the Fartura river basin in Brazil,
where the complex system of equations that defines the
physical processes is replaced by a simple one that tries
to mimic the runoff’s behavior given current and past pre-
cipitations. An extension of this model to Brazil’s Grande
river basin is presented by Ravines, Schmidt, Migon, and
Renno (2008). Other applications of the Bayesian dynamic
model in the field of hydrology include those of Berger
and Rios-Insua (1998), Krishnaswamy, Lavine, Richter, and
Korfmacher (2000) and Rios-Insua, Salewicz, Muller, and
Bielza (1997).

This paper presents a Bayesian DLM for forecasting
the water inflow at the Brazilian hydropower reservoirs.
The idea is to initially group the reservoirs by basin, then
develop a model for each basin based on its particular
characteristics. The model will be then used as an input to
a multi-stage stochastic optimization problem that solves
the hydrothermal planning. The planning horizon is five
years ahead, meaning that we are dealing with long-term
forecasting. We also want to incorporate relevant climate
variables as predictors.

The data are non-stationary. Themonthlymean inflows
for the basins located in the southern part of Brazil show

a tendency to increase. However, most importantly, we
observe non-stationarity in the seasonal pattern of the
time series; for instance, a delay in thewet season for some
of the basins. By ‘a delay in the wet season’ we mean that
the window with the peak water inflow, which used to
be December to February, is now from January to March.
Therefore,we are also dealingwith non-stationaritywithin
the season, whichmeans that the series cannot be reduced
to a stationary process by differencing, so we need to work
with a general dynamic model.

We want to model the process in its original scale,
i.e., without performing any transformation of the data
in order to achieve normality. As was noted above,
the forecasts from the DLM are fed into a stochastic
optimization algorithm, which requires the forecasting
approach to assume a linear error structure in the
time series regression. The DLM approach in this paper
does precisely that, unlike the approaches of Migon and
Monteiro (1997) and Ravines et al. (2008).

The remainder of the paper is organized as follows.
Section 2 presents the Brazilian framework, with its
major river basins and hydroelectric capacity. Section 3
describes the basin time series and correlation analysis,
while Section 4 describes the climate variables that will
be used as predictors in the model. Section 5 offers a brief
description of the Periodic Autoregressive model which
is currently used in Brazil. In Section 6 we describe the
Bayesian model for basin inflows. Section 7 details the
forecasting results andmodel performance criteria for each
basin. Section 8 concludes the work.

2. Brazilian framework

Brazil has many rivers that form twelve major drainage
basins, as shown in Fig. 1, of which only ten have
hydropower plants. The Parana basin has the highest
hydroelectric potential, around 54 gigawatts [GW], which
represents more than 50% of the total capacity. It can be
further subdivided into sixminor basins, based on itsmajor
rivers: Paranaiba, Grande, Tiete, Paranapanema, Parana
and Iguacu. Table 1 shows the total installed capacity for
each basin, which is the sum of the generation capacities
of each of the hydro plants within the basin: treating the
Parana as 6 sub-basins leads to a total of 15 basins.

There are around 140 hydroelectric power plants cur-
rently in operation, and these plants operate in a cas-
cade scheme. In order to determine how much electric-
ity each one will produce in the future, one needs to
know how much water will be available in the reservoirs.
The available historical data are the natural inflow for
each generator on a monthly basis, starting from January
1931, and measured in cubic meters per second [m3/s].
The natural inflow is the average incoming water per
unit of time at each generator’s reservoir from affluent
rivers, lakes and its own drainage area. Since the reser-
voirs operate in a cascade scheme, decisions taken at the
upstream reservoirs will influence the inflow of the down-
stream reservoirs. The available data exclude the upstream
reservoir operation by summing the natural inflow of the
reservoir upstream in the cascade and the incremental
inflow. Consider an example with two reservoirs, repre-
sented by the two triangles depicted in Fig. 2.
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