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a b s t r a c t

A two-stage forecasting approach for long memory time series is introduced. In the first
step, we estimate the fractional exponent and, by applying the fractional differencing
operator, obtain the underlying weakly dependent series. In the second step, we produce
multi-step-ahead forecasts for the weakly dependent series and obtain their long memory
counterparts by applying the fractional cumulation operator. The methodology applies to
both stationary and nonstationary cases. Simulations and an application to seven time
series provide evidence that the newmethodology is more robust to structural change and
yields good forecasting results.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

The issue of analysing economic and other series which
possess hyperbolically decaying autocorrelations has long
been of concern in the time series analysis literature. The
work of Granger (1980), Granger and Joyeux (1980) and
Hosking (1981), among others, has been influential in the
study andmodelling of such long memory series; see Beran
(1994) and Baillie (1996) for an extensive survey of this
field.

There has been amajor debate on the estimation of long
memory series in both full and semi-parametric setups,
e.g., see, among others, Abadir, Distaso, and Giraitis (2007),
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Beran, Bhansali, and Ocker (1998), Fox and Taqqu (1986),
Hualde and Robinson (2011), Robinson (1995, 2006), Shi-
motsu and Phillips (2006) and Sowell (1992) for more de-
tails.

However, the literature on the forecasting of long
memory series is still growing. Baillie, Kongcharoen, and
Kapetanios (2012), Bhansali and Kokoszka (2002), Bhard-
waj and Swanson (2006), Chan and Palma (1998) and
Diebold and Lindner (1996), among others, have been con-
cerned with predictions from ARFIMA models. A well-
known approach is to obtain predictions using a truncated
version of the infinite autoregressive representation of the
model. Peiris (1987) and Peiris and Perrera (1988) discuss
computationally feasible ways of calculating these predic-
tions, and Crato and Ray (1996) and Poskitt (2007) analyse
information criteria in order to determine the lag of the au-
toregression.

In this paper, we suggest the use of a two-stage fore-
casting approach (TSF). The TSF is a simple and intuitive
methodology. We begin by estimating the long memory
parameter using any consistent estimator, then apply the
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fractional differencing operator, resulting in the underly-
ing weakly dependent series. Finally, we compute multi-
step-ahead forecasts for the latter and apply the fractional
cumulation operator2 in order to obtain the correspond-
ing forecasts for the original long memory series. A similar
approach was adopted by Papailias, Kapetanios, and Tay-
lor (2013), who are interested in the bootstrapping of long
memory series.

Our claim is that, when forecasts of the underlying
weakly dependent series are translated to their longmem-
ory equivalents, they should provide smaller forecast er-
rors on average, given that the weakly dependent series is
less persistent, and hence, the models are able to provide
better forecasts. Therefore, TSF avoids any ‘‘loss’’ of infor-
mation that might occur when employing the truncation
of the infinite AR representation of the model.

It should be noted that we are not concerned with the
nature of the estimation of the series, i.e., full or semi-
parametric methods, and hence, we do not discuss the
advantages and/or disadvantages of such methods. We
simply rely on the consistency of the estimators for car-
rying out our forecasting methodology. In our simulations
and applications, we use the Fully Extended Local Whittle
(FELW) of Abadir et al. (2007); however, other consistent
estimators can be used equivalently.

A common issue that often arises when working with
real time series that might exhibit longmemory is the pos-
sibility of structural change. This is commonly referred to
as spurious long memory. In such cases, the change(s) in the
structure of the seriesmight bemistaken for longmemory,
or strong dependence and structural change may even co-
exist. This poses threats to the analysis, and consequently
the forecasting, of the series. Diebold and Inoue (2001)
were among the first in the field to analyse the phenomena
of long memory and structural change jointly and to prove
that structural change can bemisinterpreted as longmem-
ory. Berkes, Horváth, Kokoszka, and Shao (2006), Iacone,
Leybourne, and Taylor (2013), Lazarovà (2005), Ohanis-
sian, Russell, and Tsay (2008), Qu (2011) and Shao (2011),
among others, develop tests to accommodate this spurious
long memory effect.

However, the question is, how should the applied re-
searcher forecast series which might exhibit spurious long
memory? What happens if the tests fail to distinguish be-
tween pure long memory and structural change? Wang,
Bauwens, and Hsiao (2013) suggest that a simple autore-
gressive (AR) model should be used in the forecasting, as it
does a good job of approximating an ARFIMA process that
is subject to a mean shift or a change in the long memory
parameter.

In this paper, we show via simulations that a simple
AR model used in the second step of the TSF methodology
suggested here results in accurate and more robust
forecasts when applied to longmemory series with a break
in the mean or a change in the long memory parameter.
This result is useful for practitioners, who can employ the
methodology even when there is a possibility of spurious
long memory. An empirical exercise on seven real time

2 This is the inverse of the fractional differencing operator.

series illustrates the applicability and advantages of the
TSF methodology, and in some cases of the truncated
version of the infinite AR representation of the model, in
an applied setup.

The rest of the paper is organised as follows: Section 2
provides some basic definitions and the algorithm of the
proposed forecasting methodology. Section 3 introduces
the structural change in long memory series and discusses
the simulation results. Section 4 relates to the empirical
exercise, and Section 5 summarises the conclusions.

2. Long memory: concepts and forecasting

2.1. Existing framework

We start by considering the following general fraction-
ally integrated model

(1 − L)d xt = ut , t = 1, . . . , T , (1)

where L denotes the lag operator, d is the degree of long
memory, and ut is a weakly dependent, or short-range
dependent, process. Hence, in the above setup, xt is I (d)
and ut is I (0). We define I (0) processes such that their
partial sums converge weakly to Brownian motion; for
more information regarding the definition of I(0) pro-
cesses, see Davidson (2002, 2009), Davidson and DeJong
(2000), Müller (2008) and Stock (1994), among others. We
model ut as

ut = ψ (L) εt , (2)

with E (εt) = 0, E

ε2t


= σ 2

ε and E (εtεs) = 0 for all t ≠ s.
ψ (λ) is given by ψ (λ) =


∞

i=0 ψiλi, where ψi is a se-
quence of real numbers such that ψ0 = 1,


∞

i=0 |ψi| < ∞

and


∞

i=0 ψiλi ≠ 0. In the case where ut follows a sta-
tionary and invertible ARMA(p, q) model, xt becomes the
widely-known ARFIMA(p, d, q) model. For |d| < 0.5, the
process is stationary and invertible, whereas for d > 0.5
the process is nonstationary. The above-defined process
belongs to the Type I fractionally integrated process; see
Marinucci and Robinson (1999) and Robinson (2005) for
definitions regarding nonstationary processes and Baillie
(1996) and Beran (1994) for a more detailed introduction
to long memory processes.

We can write xt as an infinite autoregression process as
follows:

xt =

∞
i=1

βixt−i + ut , (3)

where βi =
Γ (i−d)

Γ (i+1)Γ (d) , with Γ (·) being the gamma func-
tion. The above results follow from the definition of the
fractional differencing operator, (1 − L)d, that is valid for-
mally for any real d; see Hosking (1981) for more details.

The standard forecasting method in the literature sug-
gests that, given a knowledge of the parameters and using
Eq. (3), the theoretical s-step-ahead forecast conditional on
the information available at time T is given by

xT+s =

∞
i=1

βixT+s−i. (4)
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