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a b s t r a c t

We consider the problem of combining individual forecasts of real gross domestic product
(GDP) growth and Harmonized Index of Consumer Prices (HICP) inflation from the Survey
of Professional Forecasters (SPF) for the Euro area. Contrary to the common practice of
using equal combination weights, we compute weights which are optimal in the sense
that they minimize the mean square forecast error (MSFE) in the case of point forecasts
and maximize a logarithmic score in the case of density forecasts. We show that this is a
viable strategy evenwhen the number of forecasts to be combined gets large, provided that
we constrain these weights to be positive and to sum to one. Indeed, this enforces a form
of shrinkage on the weights which ensures a reasonable out-of-sample performance of the
combined forecasts.
© 2015 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

The idea of combining individual forecasts provided
by different sources in order to achieve an improved
accuracy and reliability is quite an old one. There is a
vast body of literature on the subject, advocating the
usefulness of forecast combination methods both from a
theoretical point of view and on the basis of the results
of empirical studies. The forecasts being combined can be
either judgemental, provided for example by individual
forecasters participating in surveys, or else provided by
different quantitative models. In the present paper, we
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focus on survey data, and in particular on the ECB Survey
of Professional Forecasters (SPF). The European Central
Bank (ECB) has been conducting this survey at a quarterly
frequency since the inception of the European Monetary
Union (EMU). The survey participants are experts affiliated
with financial and non-financial European institutions.
They are asked to provide point and density forecasts for
GDP growth, HICP inflation and unemployment at different
horizons. For a detailed description of the survey, see the
papers by Bowles et al. (2007, 2010) and Garcia (2003).

A simple and widely used combination method con-
sists of simply averaging all available forecasts of a given
variable, attributing equal weights to the individual pre-
dictions. However, the idea of determining optimal com-
bination weights that minimize some objective criterion
or cost function is more appealing. When combining point
forecasts, a natural target to minimize is the mean square
forecast error (MSFE), i.e. the variance of the combination
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around the variable to be predicted. In practice, this mini-
mization can be performed over some available historical
periods, so that the optimal weights minimize an empir-
ical least-squares criterion. In economics, this idea dates
back to the work of Bates and Granger (1969) and Granger
andRamanathan (1984), andhas been the subject of a great
variety of developments, including the use of different op-
timality criteria, time-varying weights, nonlinear combi-
nation schemes, etc. For a review of the literature, we re-
fer to the survey papers by Clemen (1989) and Timmer-
mann (2006). More recently, a similar approach has been
advocated for density forecasts using combinationweights
that maximize the so-called logarithmic score (Geweke &
Amisano, 2011; Hall & Mitchell, 2007).

A closer look at this body of literature shows that, when
dealing with applications, only rather small numbers of
individual forecasts are considered for optimal combina-
tion, with optimality appearing to be given up as soon as
these numbers become large. For example, the recent pa-
pers by Geweke and Amisano (2011, 2012) and Sloughter,
Gneiting, and Raftery (2010) deal with combinations of
just a handful of individual forecasts. In other papers that
consider larger numbers of forecasts, either dimension-
reduction techniques such as principal components are ap-
plied first (as per Chan, Stock, & Watson, 1999; Poncela,
Rodrígues, Sánchez-Mangas, & Senra, 2011; Stock & Wat-
son, 2004) or the weights are either taken to be equal or
assigned on the sole basis of the previous performance of
each forecaster, ignoring mutual dependence (two impor-
tant recent examples are the papers by Clark &McCracken,
2010, for point forecasts and Jore, Mitchell, & Vahey, 2010,
for densities). This strategy appears to be justified em-
pirically by the fact that the resulting simple averaging
schemes tend to outperformmore sophisticated ones. Such
a phenomenon is usually referred to as the ‘‘forecast com-
bination puzzle’’, and has been documented recently for
our dataset by Genre, Kenny, Meyer, and Timmermann
(2013), who show that the simple equal-weight averages
constitute a benchmark which is very hard to improve
upon. This explains why this practice is still prevalent to-
day among institutions such as the ECB. Interestingly, a
similar phenomenon has been observed byDeMiguel, Gar-
lappi, and Uppal (2009) in portfolio optimization, a prob-
lem which shares with forecast combination the idea, due
to Markowitz, of exploiting diversification in order to de-
crease the risk/variance.

In the present paper, we show that there is no need to
give up optimality when going to a high-dimensional set-
ting, i.e., when combining a large number of forecasts. The
reason why previous works either stick to small combina-
tions or, for large datasets, rely on simplified covariance
modelling is probably related to two fundamental difficul-
ties: (i) the presence of finite-sample errors and numerical
instabilities in the estimation of theweights (see e.g. Smith
& Wallis, 2009); and (ii) the need to solve the resulting
high-dimensional optimization problem in a way that is
efficient computationally. For the cases of both point and
density forecast combinations, we argue that the determi-
nation of the optimalweights is stabilized by the constraint
that they should be positive and add up to one, and we
show that the computation of these optimal weights can

be implemented easily using iterative algorithms that can
handle a large number of forecasts efficiently.

In Section 2, we deal with the combination of point
forecasts, defining the optimal weights as those that min-
imize the MSFE over some historical period, imposing
the constraints that these weights must be positive (or,
more precisely, nonnegative) and sum to one. Hence, the
optimal combination problem reduces to a (possibly high-
dimensional) constrained least-squares regression prob-
lem, where the complete covariance structure between
forecasters is taken into account. We show that the com-
bined use of these two – rather natural – constraints on
the weights allows for a proper formulation of the prob-
lem, in the sense that it enforces an implicit shrinkage
of the weights, rendering their computation stable with
respect to errors in the data, even for large panels of
forecasters, which is not generally the case for ordinary
least-squares estimates in high-dimensional situations.
Moreover, the problem turns out to be analogous to the
determination of no-short minimum variance Markowitz
portfolios, i.e., portfolios for which the weights are con-
strained to be nonnegative. As was established by Brodie,
Daubechies, DeMol, Giannone, and Loris (2009), such port-
folios are a special case of a larger family of sparse and
stable portfolios that are derived through a constrained
‘‘lasso’’ regression problem. This implies that the weight
vector that solves our optimization problem is sparse,
i.e., that many of the weights are exactly zero.

The idea of optimal combination can be extended to
the case of density forecasts, using an appropriate sim-
ilarity measure between probability densities, such as a
Kullback–Leibler divergence, instead of a least-squares dis-
tance. However, in the case of survey data, we miss a tar-
get density, since only the realized value of the variable
to be forecast, say, GDP growth or HICP inflation, is avail-
able. Then, aswas proposedbyHall andMitchell (2007),we
show in Section 3 that the optimal weights can be obtained
bymaximizing a logarithmic score function, under the con-
straints that the weights are nonnegative and sum to one,
which ensures that the combination of densities is still a
proper density. To compute suchweights, we derive a sim-
ple iterative algorithm which scales well with the dimen-
sion of the panel, i.e., allows us to handle large datasets.

Section 4 contains our empirical analysis. The SPF point
and density forecasts for GDP growth and HICP inflation
are combined optimally, as described above, and compared
with equal-weight combinations, such as those used by the
ECB to summarize the results of each round of the survey.
The evaluation is performed by means of a real-time out-
of-sample forecasting exercise.

Finally, Section 5 contains the conclusions of our work,
as well as some pointers to other potential applications of
our combination framework.

2. Optimal combination of point forecasts

As in the paper by Granger and Ramanathan (1984),
we address the problem of determining the optimal
combination weights for point forecasts as a least-squares
regression problem and hence, we use the full covariance
structure between forecasters. However, in addition, we
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