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Abstract

This paper considersmodel selection, estimation and forecasting for a class of integer autoregressivemodels suitable for usewhen
analysing time series count data. Any number of lags may be entertained, and estimation may be performed by likelihood methods.
Model selection is enhanced by the use of new residual processes that are defined for each of the p+1 unobserved components of the
model. Forecasts are produced by treating the model as a Markov Chain, and estimation error is accounted for by providing
confidence intervals for the probabilities of each member of the support of the count data variable. Confidence intervals are also
available for more complicated event forecasts such as functions of the cumulative distribution function, e.g., for probabilities that the
future count will exceed a given threshold. A data set of Australian counts on medical injuries is analysed in detail.
© 2007 Published by Elsevier B.V. on behalf of International Institute of Forecasters.
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1. Introduction

One of the objectives of modelling time series data is
to forecast future values of the variables of interest. The
most common procedure for constructing forecasts in
time series models is to use conditional expectations, as
this technique will yield forecasts with the minimum
mean squared forecast error. However, this method will
invariably produce non-integer-valued forecasts,
which are thus deemed to lack data coherency in the

context of count data models. This paper presents a
method of coherent forecasting for count data time
series based on the integer autoregressive, or INAR(p),
class of models. Integer autoregressive models were
introduced by Al-Osh and Alzaid (1987) and McKen-
zie (1988) for models with one lag. Both Alzaid andAl-
Osh (1990) and Du and Li (1991) also considered the
INAR(p) class, but with different specifications of the
thinning operators. In this paper we use the condition-
ally independent thinning scheme of Du and Li (1991).
Freeland andMcCabe (2004b) suggest using the h-step
ahead conditional distribution and its median to ge-
nerate data coherent predictions in the INAR(1) case.
They also suggest that the probabilities associated with
each point mass be modified to reflect the variation in
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parameter estimation. McCabe and Martin (2005)
explored the issue of coherent forecasting with count
data models under the Bayesian framework, but they
too are concerned only with the first-order case. More
recently, Jung and Tremayne (2006) proposed a
simulation-based method for producing coherent fore-
casts for higher-order INAR models, but this too re-
quires considerable computational work and does not
use likelihood methods.

This paper makes three contributions. First, we
suggest that the model be estimated by Maximum
Likelihood (ML), should distributional assumptions
warrant it.1 We may therefore take advantage of the
well known asymptotic normality and efficiency pro-
perties of the ML method. ML is not computationally
difficult, and it allows a richer set of tools for model
selection and improvement than do other methods of
estimation for this class of models. For example, con-
sider testing whether or not a thinning component
should be excluded from the model; i.e., testing
whether the associated parameter αk=0. Since αk is a
probability, methods of estimation require that α̂k be
restricted to [0,1), and so tests based on α̂k will have a
non-standard distribution because of the truncation at
the boundary point 0. This truncation is not an issue for
score-based tests in the ML framework. Other tech-
niques like multiple residual analysis and specification
testing are also available in the ML framework. More-
over, not only is the model estimated by ML, so too is
the entire h-step-ahead probability mass function. This
provides this method of forecasting with an optimality
property. Estimation uncertainty can be accommodated
by computing confidence intervals for these probabil-
ities. Secondly, we suggest that the forecast mass
function be computed by using a Markov Chain (MC)
representation of the model. This method, while
simple, avoids the need to evaluate complicated con-
volutions, and the same technique may be applied to
any arrivals distribution and thinning mechanism.
Thirdly, we consider forecasting the cumulative dis-
tribution function and events based on it. While it is
undoubtedly interesting to know what the probability
distribution of the size of a queue is, it is often more

important to know what the probability is that the
number will exceed a certain critical threshold. This
requires forecasts of the cumulative distribution func-
tion and confidence intervals for the associated proba-
bilities. This paper explains how confidence intervals
with the correct coverage may be constructed.

A data set consisting of counts of deaths (by medical
injury), monthly from January 1997 to December 2003,
is analysed byML techniques. Lag selection is achieved
by means of residuals analysis and specification tests.
The selected model is used to forecast up to 8 months
ahead. Forecasts are made for both the probability mass
and the cumulative distribution functions.

The remainder of the paper is organized as follows.
Section 2 outlines the INAR(p) model and briefly dis-
cusses its properties. In Section 3, we present a method
for producing h-step-ahead forecasts of the conditional
probability distribution of the INAR( p) process. We
also show how parameter uncertainty can be reflected in
confidence intervals for probability forecasts. Themedi-
cal injury death count data is analysed in Section 4, and
Section 5 concludes.

2. The INAR( p) Model

Du and Li (1991) define the INAR(p) model to be

Xt ¼ a1∘Xt�1 þ a2∘Xt�2 þ : : : þ ap∘Xt�p þ et; ð1Þ

where the innovation process {εt} is i.i.d. (με, σε
2) and

is assumed to be independent of all thinning operations
αk∘Xt− k for k=1,2,…, p, which are, in turn, condition-
ally independent. The “∘” is the thinning operator,
which, conditional on Xt− k, is defined as

ak∘Xt�k ¼
XXt�k

i¼1

Bi;k ;

where each collection {Bi,k, i=1,2,…, Xt− k} consists of
independently distributed Bernoulli random variables
with parameter αk, and the collections are mutually
independent for k=1,2,…, p. Intuitively, αk ∘ Xt− k is
the number of individuals that would independent-
ly survive a binomial experiment in a given period,
where each of the Xt− k individuals has an identical
surviving probability αk. The case where p=1 and {εt}
is known as Poisson autoregression, often denoted by

1 Of course, the INAR model with Poisson arrivals could be used
as a pseudo-likelihood, with the appropriate “sandwich” modifica-
tion to the usual standard errors. We do not follow up on this
suggestion here.
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