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Keywords: Many present day applications of statistical learning involve large numbers of predictor
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1. Introduction

Linear structural models are among the most popular
for fitting data. One is given N observations of the form

i &Y = i xits - xindY, (1

which is considered to be arandom sample from some joint
(population) distribution with probability density p(x, y).
The random variable y is the “outcome” or “response”
and ¥ = {xy,...,x,} are the predictor variables. These
predictors may be the original measured variables and/or
selected functions constructed from them. The goal is to
estimate the joint values for the parameters @ = {ao, a;,
..., ap} of the linear model

F(x;a) = ap + Zajxj (2)

=1

for predicting y given x, that minimize the expected loss
(“risk™)

R(a) = Ex,L(y, F(x; @) (3)

over future predictions x, y - p(x, y). Here, L(y, F) is a loss
criterion that specifies the cost of predicting the value F
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when the actual value is y. Popular loss criteria include the
squared error

L(y,F) = (y — F)%, (4)
and the Bernoulli negative log-likelihood
L(_y’ F) :log(1+e7yF)7 y € {_15 1}7 (5)

associated with logistic regression. The negative log-
likelihood representing any probability model can be
characterized by a corresponding loss criterion.

For a specified loss criterion, the optimal parameter
values are from Eq. (3)

a* = argminR(a). (6)
a

Since the population probability density p(x,y) is un-

known, a common practice is to substitute an empirical

estimate of the expected value in Eq. (3) based on the avail-

able data (Eq. (1)), yielding

a=arg main R(a) (7)

as an estimate for a*, where

R 1 N n
R(a) = N Z’- (J/i, ap + Zajxij> . (8)
i=1 j=1
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2. Regularization

It is well known that @ in Egs. (7) and (8) often
provides a poor estimate of a*; that is, R(a) > R(a*)
(Eq. (3)). This is especially the case when the sample size
N is not large compared to the number of parameters
(n + 1). This is caused by the high variability of the
estimates in Eq. (7) when Eq. (8) is evaluated on different
random samples drawn from the population distribution.
A common remedy is to modify Eq. (7) in order to stabilize
the estimates by placing a restriction on the joint solution
values. That is,

a(t) = argmin R@ st.Pa) <t. 9)

Here, P(a) is a non-negative function of the parameters
specifying the form of the constraint, and t > 0 regulates
its strength. For a given data set (Eq. (1)), the loss criterion
L(y, F) in Egs. (3) and (8), and the constraint function P(a),
the solution to Eq. (9) depends only on the value chosen
for t. Varying its value induces a family of solutions, with
each member being indexed by a particular value of t €
[0, P(@)] (Eq. (7)). This same family of solutions can be
obtained through the equivalent (penalized) formulation
of Eq. (9):

a(\) = arg main[ia(a) + - P@)], (10)

where P(a) is the constraining function in Eq. (9), here
called a penalty, and A > O regulates its strength. Setting
X = oo produces the totally constrained solution (t = 0),
whereas A = 0 yields the unrestricted solution (t > P(a)).
Each value of 0 < A < oo in Eq. (10) produces one of the
solutions 0 < t < P(a) in Eq. (9), with smaller values of A
corresponding to larger values of t. Thus, Eq. (10) produces
a family of estimates in which each member of the family is
indexed by a particular value for the strength parameter .
This family lies on a one-dimensional path of finite length
in the (n + 1)-dimensional space of all joint parameter
values.

2.1. Model selection

The optimal parameter values a* (Eq. (6)) also represent
a point in the parameter space. For a given penalty, the goal
is to find a point A* on its path such that the corresponding
solution a(L*) is closest to a*, where the distance is
characterized by the prediction risk in Eq. (3)

D(a, a*) = R(a) — R(a*). (11)

This is a classic model selection problem where one

attempts to obtain an estimate X of the optimal value of
the strength parameter

A* =arg min R(a(i)) (12)
0<i<oo

through

% = arg min R@Q)), (13)
0<i<oo

where k(a) is a surrogate model selection criterion com-
puted from the training data in Eq. (1), whose minimum is
intended to approximate that of the actual risk (Eq. (3)).

There are a wide variety of model selection criteria
available, each developed for a particular combination of
loss (Eq. (3)) and penalty P(a). Among the most general,
being applicable to any loss-penalty combination, is cross-
validation. The data are partitioned randomly into two
subsets (learning and test). The path is constructed using
only the learning sample. The test sample is then used as
an empirical surrogate for the population density p(x, y)
to compute the corresponding (estimated) risk in Eq. (3).
These estimates are then used in Eq. (13) to obtain the

estimate A. Sometimes the risk used in Eq.(13)is estimated
by averaging over several (K) such partitions (“K-fold”
cross-validation).

2.2. Penalty selection

Given a model selection procedure, the goal is to
construct a path a()) in the parameter space such that
some of the points on that path are close to the point
a* (Eq. (6)) representing the optimal solution. If no points
on the path are close to a*, as measured by Eq. (11), then no
model selection procedure can produce accurate estimates

ﬁ():). Since the path produced by Eq. (10) depends on the
data, different randomly drawn data sets (Eq. (1)) will
produce different paths for the same penalty. Thus, the
paths are themselves random, and one seeks a penalty P(a)
that produces paths @() such that

[ErR@(2*)) — R(a*)] /R(a*) = small, (14)

with T being repeated data samples (Eq. (1)) drawn ran-
domly from the joint density p(x, y), and A* is given by
Eq. (12). This will depend on the particular a* (Eq. (6)) as-
sociated with the application. Therefore, penalty choice is
governed by whatever is known about the properties of a*.

2.3. Sparsity

One property of a* that is often suspected is sparsity.
That is, only a small fraction of the input variables {x;}]
actually influence predictions, with the identities of those
influential variables being unknown. The degree of sparsity
S(a) of a parameter vector a can be defined as

s@=- 31 <|ak| < n~mjax|aj|>, (15)

k=1

with n < 1. If the predictor variables are all standardized
to have similar scales, then S(a*) represents the fraction of
non-influential variables characterizing the problem.

If a(A*) >~ a* (Eq. (14)) then S(a(A*)) ~ S(a*), and in
the absence of other information it is reasonable to choose
a penalty that produces solutions a(1) with a sparsity
similar to that of @* at A = A*. Since the actual sparsity
of a* is generally unknown, one can define a family of
penalties P, (a), where y indexes particular penalties in
the family that produce solutions of differing sparseness,
and then use model selection (Section 2.1) to jointly
estimate good values for y and A. That is,

a,(r) = arg main[ie(a) + 1Py (a@)] (16)

(7, %) = arg r}r/lilnfi(&y (\)). (17)
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