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Abstract

Loss functions play a central role in the theory and practice of forecasting. If the loss function is quadratic, the mean of the
predictive distribution is the unique optimal point predictor. If the loss is symmetric piecewise linear, any median is an optimal
point forecast. Quantiles arise as optimal point forecasts under a general class of economically relevant loss functions, which
nests the asymmetric piecewise linear loss, and which we refer to as generalized piecewise linear (GPL). The level of the quantile
depends on a generic asymmetry parameter which reflects the possibly distinct costs of underprediction and overprediction.
Conversely, a loss function for which quantiles are optimal point forecasts is necessarily GPL. We review characterizations of
this type in the work of Thomson, Saerens and Komunjer, and relate to proper scoring rules, incentive-compatible compensation
schemes and quantile regression. In the empirical part of the paper, the relevance of decision theoretic guidance in the transition
from a predictive distribution to a point forecast is illustrated using the Bank of England’s density forecasts of United Kingdom
inflation rates, and probabilistic predictions of wind energy resources in the Pacific Northwest.
c⃝ 2010 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In many areas of human activity, a major desire
is to make forecasts about an uncertain future. Con-
sequently, forecasts ought to be probabilistic in na-
ture, taking the form of probability distributions over
future quantities or events. However, many practi-
cal situations require single-valued point forecasts, or
point predictions, for reasons of decision making, mar-
ket mechanisms, reporting requirements, communica-
tions, or tradition, among others.
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For concreteness, suppose that we are to predict a
real-valued future quantity Y , with verifying realiza-
tion y. We represent the predictive distribution for the
random variable Y in the form of a predictive cumu-
lative distribution function, F . The predictive distri-
bution is conditional on the forecaster’s information
set, consisting of data, together with expertise, theo-
ries and assumptions (Granger & Newbold, 1986, p.
120). However, the conditioning is immaterial to the
transition from the predictive distribution to the point
forecast, and thus will not be acknowledged in our no-
tation. Our task is then to issue a point forecast, x ,
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which we view as a decision or action whose mon-
etary or societal consequences can be expressed by
means of a loss function, L. The loss L(x, y) consti-
tutes the cost or penalty if we predict x and y ma-
terializes. The optimal point forecast or Bayes rule
(Ferguson, 1967, p. 31; Elliott & Timmermann, 2008,
p. 12) is any argument

x̂ = arg min
x

EF L(x, Y ) (1)

that minimizes the expected loss. If the loss func-
tion is quadratic, L(x, y) = (x − y)2, the mean of
the predictive distribution is the unique optimal point
predictor.1 If the loss is symmetric piecewise linear,
L(x, y) = |x − y|, any median of the predictive distri-
bution is an optimal point forecast. The quadratic and
the symmetric piecewise linear are the most widely
studied loss functions; they are both symmetric, in that
L(x, y) = L(y, x), and of the prediction error form, in
that the loss depends only on the prediction error x−y.

There is compelling evidence in the literature that
empirically relevant loss functions tend to be asym-
metric and may not be of the prediction error form
(Britney & Winkler, 1974; Christoffersen & Diebold,
1996, 1997; Elliott & Timmermann, 2004; Elliott, Ko-
munjer, & Timmermann, 2005, 2008; Granger, 1969;
Patton & Timmermann, 2007a,b; Varian, 1974; Zell-
ner, 1986). Under more general and more realistic loss
functions, neither the mean nor the median remain op-
timal as point predictors. For instance, if the loss func-
tion is asymmetric piecewise linear,

PLα(x, y) =


α |x − y| if x ≤ y,

(1 − α) |x − y| if x ≥ y,
(2)

of order α ∈ (0, 1), any α-quantile of the predic-
tive distribution is an optimal point forecast (Raiffa &
Schlaifer, 1961, p. 196).2 This well-known result lies
at the heart of quantile regression (Koenker & Bassett,
1978).

It is also well-known that quantiles are equivariant
to nondecreasing transformations (Koenker, 2005, p.
39). Thus, the optimality of the α-quantile as a point

1 This statement about uniqueness assumes that the predictive
distribution has a finite second moment.

2 Recall that an α-quantile (0 < α < 1) of the cumulative
distribution function F is any number x for which limy↑x F(y) ≤

α ≤ F(x).

Table 1
Assumptions on a loss function L on a DO domain, D = I×I, where
x ∈ I denotes the point forecast and y ∈ I the verifying realization.

(A0) L(x, y) ≥ 0 with equality if x = y
(A1) L(x, y) is continuous
(A2) L(x, y) is twice continuously differentiable whenever x ≠ y

forecast continues to hold under the class of gener-
alized piecewise linear (GPL) loss functions of order
α ∈ (0, 1), which are of the form

L(x, y) =


α (g(y) − g(x)) if x ≤ y,

(1 − α) (g(x) − g(y)) if x ≥ y,
(3)

where g is a nondecreasing function. Furthermore, if
a loss function is such that any α-quantile of the pre-
dictive distribution is an optimal point forecast, then it
is necessarily GPL, subject to minor regularity condi-
tions. Results of this type have been provided by Ko-
munjer (2005), Saerens (2000) and Thomson (1979).
We review them in the expository Section 2, where
we also discuss proper scoring rules and incentive-
compatible compensation schemes. In Section 3, we
demonstrate the empirical relevance of decision the-
oretic guidance in the transition from the predictive
distribution to the point forecast in a simulation experi-
ment and case studies, based on the Bank of England’s
density forecasts of United Kingdom inflation rates,
and probabilistic predictions of wind resources in the
US Pacific Northwest. These experiments complement
the empirical study of Ulu (2007), in that they apply to
a richer class of economically relevant loss functions,
rather then just asymmetric piecewise linear loss. The
paper ends with a discussion in Section 4.

2. Quantiles as optimal point forecasts

The basic notion of a decision-observation (DO)
domain emphasizes our perception of a point forecast
as a decision or action.

Definition 2.1. A subset D of the Euclidean plane, R2,
is a DO domain if it is the Cartesian product, D = I×I,
of an interval, I, which might be finite or infinite, and
open, half-open or closed, with itself.

We consider loss functions on general DO domains.
The cases of primary interest are the real line, I = R,
and the nonnegative or positive half-axis, I = [0, ∞)

or I = (0, ∞), which correspond to nonnegative
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