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Diagnostics cannot have much power against general alternatives
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Abstract

Model diagnostics are shown to have little power unless alternative hypotheses can be narrowly defined. For example, the
independence of observations cannot be tested against general forms of dependence. Thus, the basic assumptions in regression
models cannot be inferred from the data. Equally, the proportionality assumption in proportional-hazards models is not testable.
Specification error is a primary source of uncertainty in forecasting, and this uncertainty will be difficult to resolve without
external calibration. Model-based causal inference is even more problematic.
c© 2009 Published by Elsevier B.V. on behalf of International Institute of Forecasters.

Keywords: Specification error; Specification tests; Model testing; Forecast uncertainty; Causal inference

1. Introduction

The objective here is to demonstrate that, unless
additional regularity conditions are imposed, model
diagnostics have power only against a circumscribed
class of alternative hypotheses. The paper is organized
around the familiar requirements of statistical models.
Theorems 1 and 2, for example, consider the
hypothesis that distributions are continuous and have
densities. According to the theorems, such hypotheses
cannot be tested without additional structure.

Let us agree, then, that distributions are smooth.
Can we test independence? Theorems 3 and 4 indicate

1 Professor David Freedman wrote this article for the Interna-
tional Journal of Forecasting shortly before his death in October
2008.

the difficulty. Next, we grant independence and
consider tests that distinguish between (i) independent
and identically distributed random variables on the one
hand, and (ii) independent but differently distributed
variables on the other. Theorem 5 shows that, in
general, power is lacking.

For ease of exposition, we present results for
the unit interval; transformation to the positive
half-line or the whole real line is easy. At the
end of the paper, we specialize to more concrete
situations, including regression and proportional-
hazards models. We consider the implications for
forecasting, mention some pertinent literature, and
make some recommendations.

Definitions. A randomized test function is a measur-
able function φ with 0 ≤ φ(x) ≤ 1 for all x . A non-
randomized test function φ has φ(x) = 0 or 1. The
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size of φ is the supremum of
∫
φ dµ over µ that sat-

isfy the null hypothesis, a set of probabilities that will
be specified in Theorems 1–5 below. The power of φ
at a particular µ satisfying the alternative hypothesis
is
∫
φ dµ. A simple hypothesis describes just one µ;

otherwise, the hypothesis is composite. Write λ for
Lebesgue measure on the Borel subsets of [0, 1].

Interpretation. Given a test φ and data x , we reject
the null with probability φ(x). The size is the maximal
probability of rejection at µ that satisfies the null. The
power at µ is the probability of rejection, defined for
µ, that satisfies the alternative.

Theorem 1. Consider probabilities µ on the Borel
unit interval. Consider testing the simple null
hypothesis

N: µ = λ

against the composite alternative

A: µ is a point mass at some (unspecified) point.

Under these circumstances, any test of size α has
power at most α against some alternative.

Proof. Let φ be a randomized test function. If φ(x)
> α for all x ∈ [0, 1], then

∫
φ(x) dx > α. We

conclude that φ(x) ≤ α for some x , or indeed, for
a set of xs of positive Lebesgue measure. �

Comments

(i) If we restrict φ to be non-randomized, then
φ(x) = 0 for some x . In other words, power would
be 0 rather than α.

(ii) The conclusions hold not just for some alterna-
tives, but for many of them.

Theorem 2 requires some additional terminology.
A “continuous” probability assigns measure 0 to each
point. A “singular” probability on [0, 1] concentrates
on a set of Lebesgue measure 0.

Theorem 2. Consider probabilities µ on the Borel
unit interval. Consider testing the simple null
hypothesis

N: µ = λ

against the composite alternative

A: µ is continuous and singular.

Under these circumstances, any test of size α has
power at most α against some alternative.

Proof. We identify 0 and 1, then visualize [0, 1) as
the additive group modulo 1 with convolution operator
∗. If µ is any probability, then λ ∗ µ = λ. Let φ
be a randomized test function of size α. Then α ≥∫
φ dλ =

∫ ∫
φ(x + y) µ(dx) dy. Hence, there are y

with α ≥
∫
φ(x + y) µ(dx) =

∫
φ(x) µy(dx), where

µy is the translation of µ by y. If µ is continuous
and singular, so is µy ; but φ only has power α against
µy . �

Comments

(i) If we restrict φ to be non-randomized, then λ{φ
= 0} ≥ 1 − α > 0; the trivial case α = 1 must
be handled separately. Hence, power would be 0
rather than α.

(ii) There are tests with high power against any
particular alternative. Indeed, if ν is singular, it
concentrates on a Borel set B with λ(B) = 0;
let φ be the indicator function of B. This test has
size 0, and power 1 at ν. The problem lies in
distinguishing λ from the cloud of all alternatives.

A little more terminology may help. If µ and ν
are two probabilities on the same σ -field, then µ is
equivalent to ν if they have the same null sets. By the
Radon-Nikodym theorem, this is tantamount to saying
that the derivative of µwith respect to ν is positive and
finite a.e.

Write λ2 for Lebesgue measure on the Borel
subsets of the unit square. Let ξ1 and ξ2 be the
coordinate functions, so that ξ1(x, y) = x and
ξ2(x, y) = y. More generally, we write λk for
Lebesgue measure on the Borel subsets of [0, 1]k , and
ξi for the coordinate functions, so ξi (x1, x2, . . .) = xi .

If µ is a probability on the unit square, let ρµ be
the correlation between ξ1 and ξ2, computed according
to µ. This is well-defined unless µ concentrates on a
horizontal or vertical line.

For the proof of Theorem 3, if f is an integrable
Borel function on the unit interval, then λ-almost all
x ∈ (0, 1) are Lebesgue points, in the sense that

lim
h→0

1
h

∫ x+h

x
f dλ→ f (x). (1)

The result extends to k-dimensional space. See, for
instance, Dunford and Schwartz (1958, p. 215).
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