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A B S T R A C T

As the field of neuroimaging grows, it can be difficult for scientists within the field to gain and maintain a detailed
understanding of its ever-changing landscape. While collaboration and citation networks highlight important
contributions within the field, the roles of and relations among specific areas of study can remain quite opaque.
Here, we apply techniques from network science to map the landscape of neuroimaging research documented in
the journal NeuroImage over the past decade. We create a network in which nodes represent research topics, and
edges give the degree to which these topics tend to be covered in tandem. The network displays small-world
architecture, with communities characterized by common imaging modalities and medical applications, and
with hubs that integrate these distinct subfields. Using node-level analysis, we quantify the structural roles of
individual topics within the neuroimaging landscape, and find high levels of clustering within the structural MRI
subfield as well as increasing participation among topics related to psychiatry. The overall prevalence of a topic is
unrelated to the prevalence of its neighbors, but the degree to which a topic becomes more or less popular over
time is strongly related to changes in the prevalence of its neighbors. Finally, we incorporate data from PNAS to
investigate whether it serves as a trend-setter for topics’ use within NeuroImage. We find that popularity trends are
correlated across the two journals, and that changes in popularity tend to occur earlier within PNAS among
growing topics. Broadly, this work presents a cohesive model for understanding the emergent relationships and
dynamics of research topics within NeuroImage.

1. Introduction

In many fields of research, scientists develop intuitive knowledge of
which topics are popular, which might be on the horizon, and which tend
to be studied in tandem. Yet each scientist's view of the research land-
scape is based on a subsampling of the full space, depending on the na-
ture and extent of their experiences in the field. It is therefore often
daunting for those who are new to a field to construct even a superficial
picture of the research landscape. Moreover, even for those scientists that
are steeped in a particular research area, it can be challenging to imagine
new connections that might be drawn between topics that historically
have been thought of as unrelated.

Recently, the emerging field of network science has proven useful for
gaining an understanding of the broader space of scientific research
(Fortunato et al., 2018). Previous work on collaboration and citation
networks has provided insight into authors social patterns (Newman,

2001a; Borrett et al., 2014; ContandriopoulosArnaud et al., 2016),
important studies and turning points in the literature (Chen, 2004), and
the large-scale structure of the scientific landscape (Newman, 2001b;
Wallace et al., 2012). When examining networks of researchers and
networks of articles, the scientific landscape has generally been found to
show small-world properties, reflecting clustering within specialty and
efficient paths between specialties (Newman, 2001b; Wallace et al.,
2012). Yet individual fields show variability in their specific network
topology (Newman, 2001b, 2004), opening the door for greater under-
standing of how any given field efficiently carries out and disseminates
scientific research.

In the field of neuroimaging, these types of bibliometric approaches
have recently gained popularity. In particular, recent work has studied
the most impactful neuroimaging papers (Kim et al., 2016), revealed
text-based subfields within functional neuroimaging and their relation-
ships with the activation of specific brain regions (Alhazmi et al., 2018),
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and created networks that characterize the relationships between
research topics within cognitive neuroscience (Beam et al., 1949). Unlike
the study of co-authorship and citation networks, this latter study instead
uses a technique that quantifies the relationships between scientific
ideas. Here, the operationalization of science as a set of interconnected
ideas provides a unique opportunity to study how research topics are
related within and across sub-disciplines, and how these topics and their
relations grow and change over time.

As neuroimaging researchers, we sought to apply this technique to
literature from our field, and to use this framework to simultaneously
investigate large-scale and node-scale network features both overall and
over time. In this work, we apply graph theoretical approaches to a
network of the 100 most common topics covered in the journal Neuro-
Image over the ten-year span from 2008 to 2017. We discuss the large-
scale structure of this network, the communities of research areas that
emerge from the topic relationships, the roles of individual topics in
shaping the network, the ways in which these roles have changed over
time, and the potential network and literary foundations of topic popu-
larity. In sum, our study offers unique insights into the nature and use of
scientific research in contemporary neuroimaging.

2. Methods

2.1. Data collection

For this study, we retrieved keywords and abstracts from 8547 arti-
cles published in NeuroImage between 2008 and 2017. We used the
keyword sections to create a list of potential topics to be searched for in
the abstracts. We chose this technique over latent topic modeling for two
reasons: (1) it reflected scientists’ explicit opinions as to the words and
phrases that constitute relevant scientific topics, and (2) it allowed for the
incorporation of multi-word phrases.

To develop a list of potential network nodes, we manually curated the
list of topics. The specific curation procedure that we implemented was
constructed so as to address potential sources of variation in the topics.
First, variability in how researchers referred to topics was manually
adjudicated, and different terminology for the same idea was consoli-
dated. For example, functional magnetic resonance imaging and functional
magnetic resonance images were considered to be referring to the same
topic. Second, common abbreviations were detected by linking multi-
word phrases to their associated parentheticals in keyword and ab-
stract text. Moreover, all variations of the full phrase were replaced by
the relevant abbreviation in the abstract and keyword text. For example,
variations of the topic functional magnetic resonance imagingwere found to
be associated with the abbreviation fMRI, and we therefore replaced
references to these terms by fMRI in the abstract and keyword text.

2.2. Network construction

We calculated the prevalence of each potential topic by finding the
proportion of abstracts or keyword sections that contained at least one
reference to the given topic within the timespan of study. We used the
100 most common topics between 2008 and 2017 as nodes to construct
the network. Notably, we chose this value because it represented the
approximate number at which the least prevalent words occurred suffi-
ciently often to produce a statistically reliable signal in both static and
temporal analyses of the network. To ensure that our findings were not
unduly dependent on this choice, we also varied the number of topics
chosen to construct the network. The effects of network size on the
inferred topology are shown in Table S1.

Edges were weighted by the ϕ coefficient for binary association
(Ernest, 1991), representing the degree to which two topics tended to be
discussed in the same articles. We applied a threshold of positive sig-
nificance, removing negative edges and non-significant edges. This step
was taken to increase the interpretability of the inter-topic links, leading
them to signify a meaningful association between two topics within the

neuroimaging literature. Nevertheless, to ensure that our findings were
not unduly dependent on this choice, we also performed sensitivity an-
alyses in which we maintained all edges. We report the effects of this
choice on the community structure of the network in Fig. S2, and we also
discuss those results in a later section.

2.3. Network structure

To quantify the structural features of the full network, we sought to
investigate the degree to which topics tended to form tightly connected
clusters, as well as the overall level of integration of research topics
across the network.

Local topic clustering can be quantified using the clustering coeffi-
cient, which is defined for a node as the probability that two of its
adjacent nodes are connected to one another. The version of the clus-
tering coefficient used here is a measure of transitivity defined as follows
(Barrat et al., 2004):

cwi ¼ 1
siðki � 1Þ

X
h;j2N

�
wij þ wih

�
2

aijaihahj; (1)

where N is the set of all nodes, and si is the node's strength, or the sum of
all edge weights originating at node i. The variable ki is the node's de-
gree, or the number of edges originating at node i. Finally, wij is the edge
weight connecting node i and node j, and aij is 1 if wij > 0 and 0 other-
wise. The overall clustering behavior of the network can be obtained by
taking the average clustering coefficient over all nodes (Rubinov and
Sporns, 2010).

Integration across the network can be quantified using the charac-
teristic path length of a network. Path length is defined as the average
shortest path length between all node pairs (Watts and Strogatz, 1998). A
version of the path length for a weighted network can be defined as
follows:

L ¼ 1
nðn� 1Þ

X
i 6¼j

dij; (2)

where n is the number of nodes and dij is the shortest weighted path
length between nodes i and j, defined as the inverse of the edge weightwij

and obtained using the algorithm given by Johnson (Donald, 1977).
Notably, these two measures of clustering coefficient and path length

can be combined to obtain the small-world propensity of a network,
which represents the degree to which a network shows similar clustering
to that of a lattice network, and similar path length to that of a random
network (Muldoon et al., 2016). This metric is similar to the commonly
used small-world index (Watts and Strogatz, 1998), σ, but has been
shown to be unbiased even in the context of networks with varying
densities (Muldoon et al., 2016). Both measures broadly represent how
well a network can be characterized as having both disparate clusters and
strong between-cluster integration. The small-world propensity of a
network is defined as follows:

ϕ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

C þ Δ2
L

2

s
; (3)

where

ΔC ¼ Clattice � Cobserved

Clattice � Crandom
(4)

and

ΔL ¼ Lobserved � Lrandom

Llattice � Lrandom
; (5)

with C representing the network clustering coefficient, defined as the
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