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Abstract

Fatigue damage accumulation is an outstanding issue in ocean engineering due to long-term cyclic mechanical behaviours
resulting from wind, waves and currents. Fatigue monitoring of offshore truss structures has been limited by the costs and tech-
niques of current strain sensors. Aiming to estimate the unmeasured response of structural members, for which there are no
available sensors, this paper proposes a strain response estimation strategy using three types of state-space formulations and a
Kalman Filtering (KF) process. A strain modal coordinate based state-space model was developed, especially for large engineering
structures. The theoretical approaches were evaluated using the numerical simulations based on deterministic and stochastic ex-
citations. The algorithm can be integrated with the existing fatigue monitoring system as an early warning tool.
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Introduction

As an orderly hinged system, the truss structure has
been used extensively in ocean engineering, e.g.,
offshore jacket platforms, wind turbines, deepwater
truss spar platforms, pipe laying vessels and attached
facilities. As is known to all designers and engineers,
environmental loads, such as wind, waves and currents,
act on the platform and the subsystems, resulting in
long-term cyclic responses and fatigue damage

accumulation. Fatigue monitoring of the offshore truss
structure is still as significant an issue as the riser VIV,
especially related to the coupling effect of the corro-
sion. However, the use of fatigue monitoring has been
limited due to the high costs and the available practical
techniques; as a result, the sensor network can hardly
cover the key parts of the offshore truss structures,
including vulnerable underwater locations. Therefore,
it is essential to determine a feasible method to esti-
mate the unmeasured response of the structural mem-
bers in locations where there is no available sensor.

Optimal State Estimation has been developed since
the sixties of the last century [1]. Systematic state
variables can be statistically inferred and quickly
approach the true values using the state-space formu-
lation and the KF (and other advanced) process. The

* Corresponding author.

E-mail addresses: renpeng@mail.dlut.edu.cn (P. Ren), zhouzhi@

dlut.edu.cn (Z. Zhou).

Peer review under responsibility of Far Eastern Federal Univer-

sity, Kangnam University, Dalian University of Technology,

Kokushikan University.

http://dx.doi.org/10.1016/j.pscr.2014.08.005

1229-5450/Copyright © 2014, Far Eastern Federal University, Kangnam University, Dalian University of Technology, Kokushikan University.

Production and Hosting by Elsevier B.V. All rights reserved.

HOSTED BY Available online at www.sciencedirect.com

ScienceDirect

Pacific Science Review 16 (2014) 29e35
www.elsevier.com/locate/pscr

mailto:renpeng@mail.dlut.edu.cn
mailto:zhouzhi@dlut.edu.cn
mailto:zhouzhi@dlut.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pscr.2014.08.005&domain=pdf
http://dx.doi.org/10.1016/j.pscr.2014.08.005
www.sciencedirect.com/science/journal/12295450
http://dx.doi.org/10.1016/j.pscr.2014.08.005
http://dx.doi.org/10.1016/j.pscr.2014.08.005
www.elsevier.com/locate/pscr


maximised amount of information can be extracted
from the measured vibration signals in mechanical and
structural systems based on both time and observa-
tional updating. Specifically, KF allows for the esti-
mation of an unmeasured response based on a given
sparsely measured time history response and a model
of the system [2,3]. A first-order state-space formula-
tion in structural and mechanical systems can be built
through FEMs and the state variables, such as the
displacement and stress/strain.

Within the scope of the present paper, the unmea-
sured responses of the structural members for which
there is no available sensor must be estimated, and all
of the achieved responses can be utilised for fatigue
evaluation. Papadimitriou et al. (2010) proposed fa-
tigue life predictions in the entire body of metallic
structures from a limited number of vibration sensors
using KF [4]. Hernandez et al. (2011) developed an
advanced observer as a modified KF for second-order
linear structural systems [5]. The approach is used to
estimate the number of threshold crossings in the
bending moment history of a simulated tall vertical
structure subject to turbulent wind [6]. However, the
above predictions of fatigue damage accumulation are
in terms of the power spectral density (PSD) of the
stress processes. A real-time and long-term cyclic
tracking of responses must be conducted on practical
engineering applications of such theoretical
approaches.

Considering that the fatigue monitoring in the ocean
engineering area usually use a strain sensor, such as a
fibre Bragg grating (FBG) and a linear variable dif-
ferential transformer (LVDT), this paper focuses on the
strain response estimation of the unmeasured structural
members in the truss structure using the KF process.
Three types of structural state-space formulations are
derived for a more practical KF process. Theoretical
methods are validated by a simple truss FEM.

Basic method

State-space formulation based on nodal displacement

For the structural dynamics in the finite element
formulation with n degrees of freedom (DOFs) and m
elements, the differential equation describing the dy-
namics is as follows.

M€qðtÞ þC _qðtÞ þKqðtÞ ¼ B0uðtÞ þwðtÞ ð1Þ

where q(t) is the n-order node displacement vector; M, C and
K are the n-order mass, damping and stiffness matrices,
respectively. u(t) is the n-order deterministic load vector; B0 is

the deterministic load input matrix ofn � nB. Generally, the
stochastic loads act on all DOFs of the structural model. w(t) is
the n-order stochastic load vector that is also called system
noise in the control theory.

The state vector is defined as the nodal displacement
vector and the nodal velocity vector: xðtÞT ¼
fqðtÞT _qðtÞTg. The equations of motion can be
expressed as a type of first-order differential form:

_xðtÞ ¼ AxðtÞ þBuuðtÞ þBwwðtÞ ð2Þ

This equation is called the equation of state. The
structural finite element model is expressed as the
state-space representation:
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�
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where A is the system matrix of 2n � 2n; Bu is the deter-
ministic input matrix of 2n � nB; Bw is the stochastic input
matrix of 2n � n; and I is the n-order unit matrix.

The output conversion process is given by the
equation of measurement:

yðtÞ ¼ HxðtÞ þ vðtÞ ð4Þ

where y(t) is the strain response output vector. The finite
element is assumed to be some simple linear element, such
as the beam element and the truss element, in this study.
The structural strain response is defined as the strain along
the direction of the finite element length, which yields the m-
order vector. H is the measurement matrix of m � 2n; v(t) is
the m-order measurement noise vector. Note that only limited
measured strain responses can be achieved, so the element is
zero in the j-th (j2f1/mg) row of y(t). Meanwhile, the el-
ements in the j-th (j2f1/mg) row of the measurement ma-
trix H is also zero. The singular matrix is written as HS.

According to the theory of the FEM, the measure-
ment matrix should be derived based on the relation-
ship between the elemental strain and the node
displacement. First, in consideration of the element
analysis, the shape function matrix of the finite element
is set as N. Based on the virtual displacement principle
for deformable bodies, the relationship between the
internal stain εi of the element i and the element node
displacement vector fq0i g in the local coordinate sys-
tem can be given by,

εi ¼ fDNg�q0i �T ð5Þ

where D is a differential operator. Next, the global analysis is
performed on the element node displacement vector in the
global coordinate system:

bfqg ¼ ��
q01
�

/
�
q0i
�

/
�
q0m

��T ð6Þ
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