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a  b  s  t  r  a  c  t

Based  on  recent  insights  in  network  analysis,  a new  approach  to  the  analysis  and  inter-
pretation  of  social  mobility  data  is  presented.  The  approach  advocates  using  community
detection  methods  to  identify  communities  of  classes  within  which  classes  share  mem-
bers  at  above  expected  rates  and  between  which  classes  share  members  at  below  expected
rates.  This  approach,  when  applied  to mobility  data,  offers  novel  interpretations  of  mobility
patterns  and  may  be  used  to  substantially  improve  the  fit of models  of social  mobility.  To
illustrate,  the  community  structure  of  social  mobility  is  analyzed  using  data  from  the Gen-
eral Social  Survey.  Several  models  are  employed  to  demonstrate  both  the  interpretation  of
the  community  structure  of  social  mobility  as  well  as  how  the  community  structure  may
be implemented  to improve  model  fit.

© 2015  Elsevier  Ltd.  All rights  reserved.

1. Introduction

Analysts of mobility processes – be it intergenerational
social mobility, religious mobility, or educational mobility,
etc. – have a variety of log-linear and log-multiplicative
methods at their disposal with which to analyze the struc-
tures and patterns embedded within mobility tables (e.g.,
Hout, 1983). Often, the structure in mobility tables is suf-
ficiently complicated that parsimonious models do not
capture the observed patterns. That is, simple models that
account for the marginals, symmetrical movement in the
structure, and/or inheritance effects may  not be able to
fit the observed data. In such circumstances, there are
ever more complicated models that may  be fit to the
data. For example, one may  add dimensions to Goodman’s
(1985) RCII model until a model fits the data. Likewise, if
a preferred model (e.g., quasi-symmetry) does not fit the
data, one can estimate a correspondence analysis on the
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residuals to “see” the associations left over in the data (Van
der Heijden, de Falguerolles, & de Leeuw, 1989). In both
of these cases, however, the results are particularly com-
plicated and an understanding of the underlying mobility
processes may  be obscured by the complexity of the
model.

In this paper, an alternative method is introduced
for understanding and fitting mobility processes. Specif-
ically, when a model of mobility processes (e.g., quasi-
independence, symmetry, etc.) does not fit the data, the
residuals from that model can be analyzed using commu-
nity detection methods (e.g., Newman, 2010). By thinking
about class categories (or any categories in a mobility
table) as nodes, and people as the weighted relations
between them, novel insights are drawn that illumi-
nate the structure of social mobility tables. The results
from the community detection analysis parsimoniously
inform the analyst of associations that remain after the
log-linear model has been estimated. Specifically, a com-
munity detection analysis identifies which categories share
members at rates above chance (and hence belong
together). Subsequently, community membership may  be
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included in the log-linear model to improve fit (provided
the original model did not fit the data).

The approach described above offers a couple of advan-
tages relative to other similar methods. Van der Heijden
and colleague’s (1989) correspondence analysis of the
residuals from an ill-fitting log-linear model, like all
instances of correspondence analysis, suffers from ambi-
guity of the results. While correspondence analysis may
paint a pretty picture of the results (provided two dimen-
sions are sufficient), it is unclear how to proceed with the
analysis aside from just describing the associations. Like-
wise, the interpretation of results from Goodman’s (1985)
RCII model is particularly complicated. The intrinsic asso-
ciation parameter, and the row and column scores each
need to be interpreted, for each dimension that is fit to
the data. The strength of the community structure analysis
that is detailed below is that an objective function is max-
imized to identify the “best” way to combine categories,
and subsequently a single within-community term may  be
added to any log-linear model. The results are therefore
clear, unambiguous, and relatively straightforward.

Below I present this new approach to interpreting social
mobility that draws from recent advances in identifying
communities in social networks. Aside from aiding in inter-
pretation, the community procedure may  also be leveraged
to substantially improve model fit. Then the approach is
applied to social mobility tables that were derived from
the General Social Survey (GSS; Smith, Marsden, Hout, &
Kim, 2005). The community structure of multiple models of
social mobility is identified for female, male, and all respon-
dents, the results of which reveal interesting substantive
findings. Last, the community structure is then leveraged
to improve model fit, resulting in at least one model fitting
the data for female, male, and all respondents. The paper
concludes with limitations and a general discussion.

2. Communities of social classes

Within network science, a mode refers to a set of objects
for which relations may  be measured. For example, a
person-to-person network is a one-mode network, while
a person-to-groups network is a two-mode network (an
affiliation network). An intergenerational mobility table
may  be productively understood to be a two-mode net-
work, where the first mode is parental social class and the
second mode is respondent social class. What are shared
between these modes are members, or the count of people
who have a given social class and have parents of a given
social class. Though it is not necessary, it is often assumed
that the same social classes are represented for both par-
ents and respondents, which implies that both modes share
the same number of nodes, or in this case, categories.

One common analytic approach for the analysis of social
networks is the identification of communities or cohe-
sive subgroups (Newman, 2010). Here, a community refers
to a subset of nodes (categories) which share relations
(people) at above expected rates. Community detection
has a rich history in computer science and the social sci-
ences (e.g., Fielder, 1973; Jackson, 2008; Wasserman &
Faust, 1994), with several early sociological methods devel-
oped to detect subsets of similarly embedded actors (e.g.,

Breiger, Boorman, & Arabie, 1975; Burt, 1978; Lorrain and
White, 1971), but this literature has seen an explosion of
development since Girvan and Newman (2002) brought
this problem to the attention of the general scientific com-
munity (Porter, Onnela, & Mucha, 2009).

In this paper, I focus on Newman’s (2006a,b) eigen-
spectrum decomposition approach because it is easily
applicable to mobility tables, has been generalized to multi-
mode networks (Melamed, Breiger, and West, 2013), such
as mobility tables, and is highly efficient and accurate rela-
tive to other solutions to the community finding problem.1

Newman’s (2006a) eigenspectrum approach is elegantly
simple. One begins with a relational matrix that is denoted
by A, defines a matrix of expected cell counts that is
denoted by P (which is typically an “independence” model,
though see below), subtracts P from A to yield B, which is
called the modularity matrix, and finally one computes the
eigenspectrum decomposition of the modularity matrix.
Thus, B is a matrix of residuals between the observed
data and the expected frequencies under some model. The
eigenspectrum of the residual matrix, B, sheds light on the
community structure of A (Newman, 2006a,b). Newman
has shown that the signs of the entries in the eigenvector
associated with the largest eigenvalue partition the nodes
into an optimal two community split. Subsequent splits
into more than two  communities may  be determined by
examining the signs of the entries in the second leading
eigenvector, and so on (Newman, 2006b: 9–10).2

Another development with respect to community struc-
tures made by Newman and Girvan (2004) was to define the
quality function that is unfortunately also called modula-
rity. Modularity (denoted by Q) is a quality function (i.e.,
goodness-of-fit) that indicates the strength of, or variance
explained by, a community structure discovered by the
community finding algorithms. That is, it provides a bench-
mark with which to compare possible solutions to the
community structure. Larger values of Q indicate that larger
shares of the relations in the data are within community
ties; hence larger values indicate a better fit to the data. The
specific formula for modularity developed by Newman and
Girvan was  generalized for the eigenspectrum approach by
Newman (2006b). Thus, the eigenspectrum decomposition
of the modularity matrix can be used to identify possible
solutions to the community structure, and the quality func-
tion modularity can be used to identify which solution is
“best.”

The general formula for the modularity function is
the most intuitive. Define a number-of-communities by
number-of-communities matrix, which is denoted e. The
i,jth entry in e is the proportion of ties in the network
that go from the community in row i to the community

1 The global optimum of a community solution is known to be NP-hard.
Hence one can never know if a community solution is the optimal solution.
The eigenspectrum approach is both efficient and accurate. For reviews of
other approaches to identify communities, see Fortunato (2010),  Newman
(2010), or Porter, Onnela, and Mucha (2009).

2 It should be noted that this strategy is typically implemented on binary
networks, but there is no reason for this restriction. Newman (2004) has
pointed out that the eigenspectrum decomposition easily generalizes to
weighted graphs.
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