Article ID Journal Published Year Pages File Type
10081790 The Journal of Arthroplasty 2005 7 Pages PDF
Abstract
The hip simulator wear performance of an electron beam cross-linked and subsequently melted ultrahigh molecular weight polyethylene against femoral heads of 28-, 38-, and 46-mm diameter in the presence of poly(methyl-methacrylate) particulate debris was contrasted with that of conventional polyethylene against a 46-mm diameter head. Over 5 million cycles of testing, the average wear rate of the conventional polyethylene liners was 29.3 ± 3.0 mg per million cycles. All highly cross-linked components exhibited marked reduction in wear, with the highest wear measuring 0.74 ± 0.85 mg per million cycles. This study, using a clinically relevant third-body material, showed the electron beam cross-linked material to be far more resistant to this third-body wear than conventional ultrahigh molecular weight polyethylene, even when very large diameter femoral heads were used.
Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , ,