Article ID Journal Published Year Pages File Type
10110896 Science of The Total Environment 2005 16 Pages PDF
Abstract
Correlations between trace metals in dissolved and particulate phases, zooplankton, mussels and sediments in Lake Balaton were investigated. The degree of correlation between the various metals was different in each of the investigated compartments. Particulate metal concentrations (μg g−1) were anti-correlated with suspended particulate matter (SPM) (mg l−1), indicating a dilution effect, while total metal concentrations in the water column (μg l−1) were highly correlated with SPM, implying a major influence of the turbidity on the total metal concentrations. Between compartments, not many significant correlations were recognized. Only Ba, Ca, Sr and Mg are correlated in the sediments and in the particulate phase, suggesting common sources for both compartments. Partitioning coefficients (Kd) of trace metals between dissolved and particulate phases are generally low, typical for natural water and fairly stable over the lake. Most of the trace metals (Zn, Co, Cd and Pb) exist in the particulate phase (for about 70% of the total metal load). Cu and Ni are exceptions, showing a more equal distribution. Bioconcentration factors (BCF) of zooplankton and mussels were comparable to those of other natural waters. A negative biomagnification from suspended particulate matter to zooplankton and from sediment to mussel was recognized for all trace metals, except a small enrichment of Zn in zooplankton and Cd in mussel. Four factors were recognized in SPM and in sediments but they did not contain the same group of metals. Cluster analysis showed that metal accumulations in the sediments were different between northern and southern shores and in SPM between western and eastern areas.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , ,