Article ID Journal Published Year Pages File Type
10113982 Remote Sensing of Environment 2018 18 Pages PDF
Abstract
The analysis of the cloud classification errors obtained for our test sites allowed us to get important inferences of general value. The L1C cloud mask generally underestimated the presence of clouds (average Omission Error, OE, 37.4%); this error increased (OE > 50%) for imagery containing opaque clouds with a large transitional zone (between the cloud core and clear areas) and cirrus clouds, fragmentation emerged as a major source of omission errors (R2 0.73). Overestimation was prevalently found in the presence of holes inside the main cloud bodies. Two extreme environments were particularly critical for the L1C cloud mask product. Detection over Amazonian rainforests was highly inefficient (OE > 70%) due to the presence of complex cloudiness and high water vapor content. On the other hand, Alpine orography under dry atmosphere created false cirrus clouds. Altogether, cirrus detection was the most inefficient. According to our results, Sentinel-2 L1C users should take some simple precautions while waiting for ESA improved cloud detection products.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , ,